Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 13 additions & 0 deletions download_models.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
from transformers import LlamaForCausalLM

model_small = "meta-llama/Llama-2-7b-hf"
model_medium = "meta-llama/Llama-2-13b-hf"
model_large = "meta-llama/Llama-2-70b-hf"


model = LlamaForCausalLM.from_pretrained(
model_medium,
torch_dtype="auto",
cache_dir="/scratch/p490-24-t/all_llamas",
token="<INSERT_TOKEN_HERE>",
)
46 changes: 31 additions & 15 deletions llama.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,27 +8,35 @@

try:
import wandb

has_wandb = True
except:
has_wandb = False


def get_llama(model):
import torch

def skip(*args, **kwargs):
pass

torch.nn.init.kaiming_uniform_ = skip
torch.nn.init.uniform_ = skip
torch.nn.init.normal_ = skip
from transformers import LlamaForCausalLM
model = LlamaForCausalLM.from_pretrained(model, torch_dtype='auto')#, cache_dir='/scratch/p490-24-t/llamas')

model = LlamaForCausalLM.from_pretrained(
model,
torch_dtype="auto",
cache_dir="/scratch/p487-24-1/llamas",
)
model.seqlen = model.config.max_position_embeddings
return model


@torch.no_grad()
def llama_sequential(model, dataloader, dev):
print("Starting...")
print(f"Starting... on device {dev}")

use_cache = model.config.use_cache
model.config.use_cache = False
Expand Down Expand Up @@ -71,7 +79,6 @@ def forward(self, inp, **kwargs):
outs = torch.zeros_like(inps)
attention_mask = cache["attention_mask"]


if args.fix_mask:
masks = {}
for n, p in model.named_parameters():
Expand All @@ -82,11 +89,11 @@ def forward(self, inp, **kwargs):
dim = shape_key[0]
nnz = 0.1 if shape_key[0] == shape_key[1] else 0.2
print(n, p.shape, shape_key, nnz)
A = torch.eye(dim, device="cuda")
A = torch.eye(dim, device="cuda")
Arand = torch.rand_like(A)
Arand += A * 100
thres = Arand.abs().flatten().sort()[0][int(A.numel() * (1-nnz))]
masks[shape_key] = (Arand.abs() > thres)
thres = Arand.abs().flatten().sort()[0][int(A.numel() * (1 - nnz))]
masks[shape_key] = Arand.abs() > thres

print("Ready.")

Expand Down Expand Up @@ -114,12 +121,16 @@ def forward(self, inp, **kwargs):
not (args.minlayer <= i < args.maxlayer and args.prune_only in name)
) == (not args.invert):
continue

fixmask = None
if args.fix_mask:
shape_key = min(subset[name].weight.shape), max(subset[name].weight.shape)
shape_key = min(subset[name].weight.shape), max(
subset[name].weight.shape
)
fixmask = masks[shape_key]
gpts[name] = DoubleSparse(subset[name], nofinal=args.no_final, fixmask=fixmask)
gpts[name] = DoubleSparse(
subset[name], nofinal=args.no_final, fixmask=fixmask
)

def add_batch(name):
def tmp(_, inp, out):
Expand Down Expand Up @@ -162,7 +173,7 @@ def tmp(_, inp, out):


@torch.no_grad()
def llama_eval(model, testenc, dev, dataset: str, log_wandb: bool = False):
def llama_eval(model, testenc, dev, dataset: str, log_wandb: bool = False):
print("Evaluating ...")

testenc = testenc.input_ids
Expand Down Expand Up @@ -320,29 +331,34 @@ def forward(self, inp, **kwargs):
parser.add_argument(
"--no-final", action="store_true", help="Do not run the finalizer."
)
parser.add_argument(
"--fix-mask", action="store_true", help="Keep one mask fixed."
)
parser.add_argument("--fix-mask", action="store_true", help="Keep one mask fixed.")
args = parser.parse_args()

# init W&B logging
if args.log_wandb:
assert has_wandb, "wandb not installed try `pip install wandb`"
wandb.init(config=args)

print(f"Running on dev: {DEV}")
print("loading llama")
model = get_llama(args.model)
print("llama loaded")
model.eval()

dataloader, testloader = get_loaders(
args.dataset, nsamples=args.nsamples, seed=args.seed, model=args.model, seqlen=model.seqlen
args.dataset,
nsamples=args.nsamples,
seed=args.seed,
model=args.model,
seqlen=model.seqlen,
)

if (args.sparsity or args.prunen) and not args.gmp:
tick = time.time()
llama_sequential(model, dataloader, DEV)
for n, p in model.named_parameters():
print(n, torch.mean((p == 0).float()))
if 'down_proj' in n:
if "down_proj" in n:
break
print(time.time() - tick)

Expand Down
2 changes: 2 additions & 0 deletions logs/llama2-13-0.5
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
Running on dev: cuda:0
loading llama
Loading