Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
139 changes: 128 additions & 11 deletions afqinsight/nn/pt_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -704,6 +704,19 @@ def forward(self, x):


class VariationalAutoencoder(nn.Module):
"""
Variational Autoencoder (VAE) model.

Parameters
----------
input_shape : int
The number of features in the input data.
latent_dims : int
The number of dimensions in the latent space.
dropout : float
The dropout rate.
"""

def __init__(self, input_shape=100, latent_dims=20, dropout=0.2):
super().__init__()
self.encoder = VariationalEncoder(input_shape, latent_dims, dropout=dropout)
Expand All @@ -716,7 +729,46 @@ def __init__(self, input_shape=100, latent_dims=20, dropout=0.2):
else "cpu"
)

def reparameterize(self, mean, logvar):
"""
Reparameterization trick to separate random
and deterministic parts of the latent space.

Parameters
----------
mean : torch.Tensor
The mean of the latent space.
logvar : torch.Tensor
The log variance of the latent space.

Returns
-------
z : torch.Tensor
The reparameterized latent space.
"""
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
z = mean + eps * std
return z

def forward(self, x):
"""
Forward pass of the VAE model.

Parameters
----------
x : torch.Tensor
The input data.

Returns
-------
x_hat: torch.Tensor
The reconstructed data.
mean: torch.Tensor
The mean of the latent space.
logvar: torch.Tensor
The log variance of the latent space.
"""
mean, logvar = self.encoder(x)

z = self.reparameterize(mean, logvar)
Expand All @@ -725,11 +777,6 @@ def forward(self, x):

return x_hat, mean, logvar

def reparameterize(self, mean, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mean + eps * std

def fit(self, train_data, epochs=500, lr=0.001, kl_weight=0.001):
self.train()
opt = torch.optim.Adam(self.parameters(), lr=lr)
Expand Down Expand Up @@ -829,6 +876,19 @@ def fit_transform(self, data, epochs=20, kl_weight=0.001):


class Autoencoder(nn.Module):
"""
Autoencoder model.

Parameters
----------
input_shape : int
The number of features in the input data.
latent_dims : int
The number of dimensions in the latent space.
dropout : float
The dropout rate.
"""

def __init__(self, input_shape=100, latent_dims=20, dropout=0.2):
super().__init__()
self.encoder = Encoder(input_shape, latent_dims, dropout=dropout)
Expand Down Expand Up @@ -930,6 +990,19 @@ def fit_transform(self, data, epochs=20):


class Conv1DVariationalAutoencoder(nn.Module):
"""
Convolutional Variational Autoencoder (VAE) model.

Parameters
----------
num_tracts : int
The number of tracts in the input data.
latent_dims : int
The number of dimensions in the latent space.
dropout : float
The dropout rate.
"""

def __init__(self, num_tracts=48, latent_dims=20, dropout=0.2):
super().__init__()
self.encoder = Conv1DVariationalEncoder(num_tracts, latent_dims, dropout)
Expand All @@ -943,21 +1016,52 @@ def __init__(self, num_tracts=48, latent_dims=20, dropout=0.2):
)

def reparameterize(self, mean, logvar):
"""
Reparameterization trick to separate random and
deterministic parts of the latent space.

Parameters
----------
mean : torch.Tensor
The mean of the latent space.
logvar : torch.Tensor
The log variance of the latent space.

Returns
-------
z : torch.Tensor
The reparameterized latent space.
"""
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
z = mean + eps * std
return z

def forward(self, x):
(
mean,
logvar,
) = self.encoder(x)
"""
Forward pass of the Convolutional VAE model.

Parameters
----------
x : torch.Tensor
The input data.

Returns
-------
x_hat: torch.Tensor
The reconstructed data.
mean: torch.Tensor
The mean of the latent space.
logvar: torch.Tensor
The log variance of the latent space.
"""

mean, logvar = self.encoder(x)

z = self.reparameterize(mean, logvar)

x_prime = self.decoder(z)
return x_prime, mean, logvar
x_hat = self.decoder(z)
return x_hat, mean, logvar

def fit(self, train_data, epochs=500, lr=0.001, kl_weight=0.001):
self.train()
Expand Down Expand Up @@ -1056,6 +1160,19 @@ def fit_transform(self, data, epochs=20, kl_weight=0.001):


class Conv1DAutoencoder(nn.Module):
"""
Convolutional Autoencoder model.

Parameters
----------
num_tracts : int
The number of tracts in the input data.
latent_dims : int
The number of dimensions in the latent space.
dropout : float
The dropout rate.
"""

def __init__(self, num_tracts=48, latent_dims=20, dropout=0.2):
super().__init__()
self.encoder = Conv1DEncoder(num_tracts, latent_dims, dropout)
Expand Down