This repository contains a collection of Python tutorials in the form of Jupyter Notebooks. These tutorials cover the basics of Python, Object-Oriented Programming, and scientific computing with NumPy.
- 000-about_py.ipynb: Introduction to Python, its features, and setting up the environment.
- 001-python_by_example.ipynb: Learning Python through example programs.
- 002-python_essentials.ipynb: Essential Python concepts including data types and control flow.
- 003-oop_intro.ipynb: Introduction to Object-Oriented Programming (OOP) in Python.
- 004-numpy.ipynb: Introduction to NumPy for array processing and numerical computing.
- 005-pandas_intro.ipynb: Introduction to Pandas for data manipulation and analysis.
- 006-visualization_matplotlib_seaborn.ipynb: Data Visualization with Matplotlib and Seaborn.
- 007-scikit_learn_intro.ipynb: Machine Learning basics with Scikit-Learn.
- 008-modern_python_features.ipynb: Modern Python features (f-strings, type hints, etc.).
- 009-coding_with_llms.ipynb: How to code effectively with LLM tools.
- UC-getting_started.ipynb: Guide to setting up the Python environment (Anaconda, Jupyter).
- UC-builtin_functions.ipynb: Overview of Python's built-in functions.
- Python 3.x
pip
-
Clone the repository:
git clone <repository-url> cd Python-tutorial
-
Create a virtual environment:
python3 -m venv .venv source .venv/bin/activate # On Windows use `.venv\Scripts\activate`
-
Install the required dependencies:
pip install -r requirements.txt
Start the Jupyter Server:
jupyter notebookThis will open the Jupyter interface in your browser, where you can select and run the notebooks.
This project is licensed under the MIT License - see the LICENSE file for details.