Skip to content

michaelbaoo/CryptoCompass

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CryptoCompass - Solana Trading Intelligence

A comprehensive trading intelligence platform for Solana tokens, featuring real-time DEX analysis, ML-powered predictions, smart money tracking, and advanced risk assessment.

Features

Core Capabilities

  • Real-time Price Monitoring - Sub-second updates with WebSocket connections
  • Technical Indicators - RSI, MACD, Bollinger Bands, Volume analysis, and custom DEX indicators
  • Machine Learning - LSTM price prediction, pump detection, anomaly detection, pattern recognition
  • Risk Assessment - Rug pull detection, liquidity analysis, holder distribution monitoring
  • Backtesting Framework - Historical strategy testing with walk-forward analysis
  • Alert System - Multi-channel notifications (email, Discord, Telegram, push)

Technical Stack

  • Backend: Python 3.11, FastAPI, WebSockets
  • ML/Data: TensorFlow, scikit-learn, pandas, numpy
  • Database: PostgreSQL, Redis
  • Monitoring: Prometheus, Grafana
  • Deployment: Docker, Docker Compose

Quick Start

Prerequisites

  • Docker and Docker Compose
  • Python 3.11+
  • Jupiter and DexScreener API access
  • Solana RPC endpoint (optional, defaults to public)

Installation

  1. Clone the repository:
git clone https://github.com/yourusername/cryptocompass.git
cd cryptocompass
  1. Set up environment variables:
cp .env.example .env
# Edit .env with your API keys and configuration
  1. Start the services:
docker-compose up -d
  1. Access the dashboard:

Development Setup

  1. Install dependencies:
pip install -r requirements.txt
  1. Run tests:
pytest tests/
  1. Start development server:
uvicorn src.api.main:app --reload

API Usage

Get Token Information

import requests

response = requests.get("http://localhost:8000/api/tokens/{token_address}")
token_data = response.json()

Subscribe to Real-time Updates

const ws = new WebSocket('ws://localhost:8080/ws');

ws.send(JSON.stringify({
    type: 'subscribe',
    token: 'token_address_here'
}));

ws.onmessage = (event) => {
    const data = JSON.parse(event.data);
    console.log('Update:', data);
};

Run Backtest

backtest_params = {
    "token_address": "...",
    "strategy": "momentum",
    "start_date": "2024-01-01",
    "end_date": "2024-12-31",
    "initial_capital": 10000
}

response = requests.post("http://localhost:8000/api/backtest", json=backtest_params)
results = response.json()

Configuration

Key configuration options in src/config.py:

  • API Settings: Rate limits, timeouts, endpoints
  • Indicators: Periods, thresholds, parameters
  • Risk Management: Position sizing, stop-loss levels
  • ML Models: Training frequency, confidence thresholds
  • Alerts: Delivery channels, sensitivity

Architecture

├── src/
│   ├── api/           # FastAPI application
│   ├── core/          # Technical indicators
│   ├── data/          # Data fetching and aggregation
│   ├── ml/            # Machine learning models
│   ├── backtesting/   # Backtesting engine
│   ├── monitoring/    # Feedback and monitoring
│   └── ui/            # Web dashboard
├── models/            # Trained ML models
├── tests/             # Test suite
└── docker-compose.yml # Container orchestration

Performance Metrics

The system tracks:

  • Prediction accuracy
  • Signal success rate
  • API latency
  • System resource usage
  • Model confidence scores

Access metrics at:

Security Considerations

  • Never commit API keys or secrets
  • Use environment variables for sensitive data
  • Enable HTTPS in production
  • Implement rate limiting
  • Regular security audits
  • Monitor for anomalous activity

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests
  5. Submit a pull request

License

MIT License - See LICENSE file for details

Support

Disclaimer

This tool is for educational and research purposes only. Cryptocurrency trading involves substantial risk of loss. Always do your own research and never invest more than you can afford to lose.

About

AI Powered Trading Indicator

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published