-
Notifications
You must be signed in to change notification settings - Fork 27
[Optimization 6/n] Introduce Optimization Worker #80
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
kaiming-cheng
wants to merge
33
commits into
main
Choose a base branch
from
kaiming/opt_component_6
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Consolidates previous kernel_benchmark.py and pytorch_benchmark.py into a streamlined 3-file architecture with clear separation of concerns: Architecture: - benchmark.py (299 lines): Main Benchmark class with simplified API - benchmark_kernel(): Always uses subprocess for crash protection - benchmark_pytorch(): Always uses direct mode for stable code - BenchmarkLockManager: GPU lock management for multi-worker scenarios - timing.py (437 lines): Complete timing infrastructure - Timing: time_with_cuda_events(), time_with_triton_do_bench() - Loading: prepare_pytorch_model(), load_kernel_function() - Stats: compute_timing_stats() with essential metrics (mean/std/min/max) - kernel_subprocess.py (442 lines): Subprocess runner for kernel isolation - Crash protection for potentially buggy kernels - Clean CUDA state between runs - Timeout handling Key improvements: - Eliminated string code generation (was generating Python as strings) - Removed unnecessary statistics (median, p25/p75/p95/p99) - Removed confusing use_subprocess parameter (behavior now deterministic) - Fixed dtype bug causing incorrect speedup measurements - Reduced from 5 files to 3 files with clearer naming - Code reduction: ~1,400 lines → 1,178 lines Simple API: bench = Benchmark(logger, temp_dir, lock, worker_id) pytorch_result = bench.benchmark_pytorch(problem_file) kernel_result = bench.benchmark_kernel(kernel_file, problem_file) speedup = pytorch_result['stats']['mean'] / kernel_result['time_ms']
…lity to the worker_util.py
…. remove class that can be directly imported
… auxiliary kernels
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
This PR introduces
OptimizationWorkerfromopt_worker.py. TheOptimizationWorkerintegrated class fromopt_worker_components, demonstrating the end-to-end usage of the optimization pipeline.Changes
opt_worker.pyintroducesOptimizationWorker- a hardware-aware optimization worker that orchestrates the full optimization pipeline:bottleneck_analyzer.py: We also add a new class to interface with the modular components inopt_worker_component/diagnose_prompt, which wraps the Judge LLM workflow for dual-bottleneck analysisworker_util.pyextracts shared utility functions used by bothVerificationWorkerandOptimizationWorker:Test