Model options: llama3.1-8b-it, llama3.2-3b-it, llama3.2-1b-it, qwen2.5-7b-it, qwen2.5-3b-it
Dataset options: gsm8k, arithmetic, mbpp, humaneval_instruct, hellaswag, boolq, arc_challenge, mmlu, swearing, rhyming
Get baseline accuracy of GSM8K dataset on Llama 3.1 8B model
python run_evals.py --single-run --model llama3.1-8b-it --task gsm8kAccuracy with heads L16H21 and L15H13 ablated
python run_evals.py --single-run --model llama3.1-8b-it --task gsm8k --layerid 16 15 --headid 21 13Perform compressed sensing with 100 masks, each of which has 0.02 sparsity. Include --stratified flag for stratified sampling in the measurement matrix, otherwise defaults to Bernoulli sampling.
python compressed_sensing.py --model llama3.1-8b-it --task gsm8k --nmasks 100 --sparsity 0.02 --num-samples 100 --stratifiedGreedy search via comprehensive ablation of all heads
python run_evals.py --model llama3.1-8b-it --task gsm8k --num-samples 100Greedy search that additionally always knocks out L16H21 (i.e. for subsequent iterations of iterative greedy search) and does checkpointing for intermediate saving
python run_evals.py --model llama3.1-8b-it --task gsm8k --num-samples 100 --extra-layers 16 --extra-heads 21 --checkpointAfter performing greedy search, print out a list of the heads that resulted in the smallest accuracy on the target task:
python get_heads.py --filename {saved filepath here}