Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions polyseq/dim.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import RandomizedPCA
from sklearn.decomposition import PCA
from sklearn.neighbors.kde import KernelDensity
from MulticoreTSNE import MulticoreTSNE
import umap as umap_module
Expand Down Expand Up @@ -40,7 +40,7 @@ def pca(data, k=None, n_shuffles=100, alpha=0.05, n_processes=1, max_pcs=100, pl
if k is not None:
with warnings.catch_warnings():
warnings.simplefilter('ignore')
pca = RandomizedPCA(n_components=k)
pca = PCA(n_components=k, svd_solver='randomized')
proj = pca.fit_transform(zscored)
col_names = ["pc-{}".format(i) for i in range(proj.shape[1])]
return ExpressionMatrix(proj, columns=col_names)._finalize(index=data.index)
Expand All @@ -55,7 +55,7 @@ def bootstrap_pc(seed):

with warnings.catch_warnings():
warnings.simplefilter('ignore')
pca = RandomizedPCA(n_components=1)
pca = PCA(n_components=1, svd_solver='randomized')
pca.fit(b)
return pca.explained_variance_[0]

Expand All @@ -65,7 +65,7 @@ def bootstrap_pc(seed):

with warnings.catch_warnings():
warnings.simplefilter('ignore')
pca = RandomizedPCA(n_components=max_pcs)
pca = PCA(n_components=max_pcs, svd_solver='randomized')
proj = pca.fit_transform(zscored)

inds = np.where(pca.explained_variance_ < cutoff)[0]
Expand Down