This repository contains sample code for working with Databricks.
README.md: Overview and guide to the repository.Cheat Sheets/PySpark_SQL_Cheat_Sheet.pdf: Quick reference for PySpark SQL commands.Cheat Sheets/Scikit-Learn_Cheat_Sheet.pdf: Quick reference for Scikit-Learn.SQL/sql_cheat_sheet_EN.md: Summary of common SQL commands in English.SQL/sql_cheat_sheet_ES.md: Summary of common SQL commands in Spanish.sql/create_materialized_view.sql: Example showing how to create a Delta materialized view.notebooks/PySpark_Databricks_Notebook.ipynb: Notebook with key PySpark commands for Databricks.notebooks/PySpark_Databricks_Notebook.py: Script version of the previous notebook.notebooks/pyspark_dataframe_api_commands.ipynb: Examples of the PySpark DataFrame API.notebooks/pyspark_delta_commands.ipynb: Commands for working with PySpark and Delta Lake.notebooks/pyspark_pipeline_with_cache.ipynb: PySpark pipeline demonstrating the use of.cache().notebooks/scikit_learn_commands.ipynb: Essential steps for training models with scikit-learn.notebooks/data_quality_best_practices.ipynb: Best practices for data quality pipelines.notebooks/delta_lake_interview_commands.ipynb: Common Delta Lake commands for interviews.notebooks/pandas_data_processing_commands.ipynb: Typical data processing commands with Pandas.notebooks/spark_sql_commands.ipynb: Summary of Spark SQL commands.notebooks/Medallion/bronze_layer_processing.ipynb: Bronze layer processing.notebooks/Medallion/silver_layer_processing.ipynb: Silver layer processing.notebooks/Medallion/gold_layer_processing.ipynb: Gold layer processing.