Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
numba
numpy
pypcd @ git+https://github.com/klintan/pypcd.git
open3d
scikit-learn
matplotlib
tqdm
h5py
269 changes: 269 additions & 0 deletions triangulator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,269 @@
import argparse
from os.path import join
from pypcd import pypcd
import numpy as np
from scipy.spatial import Delaunay

import matplotlib.pyplot as plt

from scipy.spatial import Delaunay

import open3d as o3d
import json

from tqdm.contrib.concurrent import thread_map

from functools import partial

from asGeometryOCCWrapper.surfaces import SurfaceFactory

import os
from pathlib import Path

import igl

import json

EPS = np.finfo(float).eps
LEAF_SIZE = 0.02
N_NEIGHBORS = 10
MAX_WORKERS = 8
GENERATE_TRIANGULATION_FEATURES = False
PROJECT_POINTS = False
FILTER = True

def computeLabelsFromFace2Primitive(labels, features_data):
max_face = np.max(labels)
for feat in features_data:
max_face = max(0 if len(feat['face_indices']) == 0 else max(feat['face_indices']), max_face)
face_2_primitive = np.zeros(shape=(max_face+1,), dtype=np.int32) - 1
face_primitive_count = np.zeros(shape=(max_face+1,), dtype=np.int32)
for i, feat in enumerate(features_data):
for face in feat['face_indices']:
face_2_primitive[face] = i
face_primitive_count[face] += 1
assert len(np.unique(face_primitive_count)) <= 2
features_point_indices = [[] for i in range(0, len(features_data) + 1)]
for i in range(0, len(labels)):
index = face_2_primitive[labels[i]]
features_point_indices[index].append(i)
labels[i] = index
features_point_indices.pop(-1)

for i in range(0, len(features_point_indices)):
features_point_indices[i] = np.array(features_point_indices[i], dtype=np.int64)

return labels, features_point_indices

def compute_local_densities(pcd, k=N_NEIGHBORS):
if len(pcd.points) > 1:
pcd_tree = o3d.geometry.KDTreeFlann(pcd)
points = np.asarray(pcd.points)
distances = []
for i in range(len(points)):
A = points[i]
_, idx, _ = pcd_tree.search_knn_vector_3d(A, k)
points_query = points[np.asarray(idx)]
B = points_query[-1]
dist = np.linalg.norm(B-A, ord=2)
distances.append(dist)
dist_arr = np.array(distances)
return np.min(dist_arr, axis=0), np.mean(dist_arr, axis=0), np.max(dist_arr, axis=0)
else:
return 0, 0, 0

def filter_pcd(pcd):
if FILTER:
pcd = pcd.voxel_down_sample(voxel_size=LEAF_SIZE)
pcd, _ = pcd.remove_statistical_outlier(nb_neighbors=N_NEIGHBORS, std_ratio=2.0)
return pcd

def bpa_triangulation(pcd, surface=None):
pcd = filter_pcd(pcd)
if len(pcd.points) > 2:
_, _, max_r = compute_local_densities(pcd)
radii = [max_r/2, max_r]
mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_ball_pivoting(
pcd, o3d.utility.DoubleVector(radii))
return mesh
else:
return o3d.geometry.TriangleMesh()

def poisson_triangulation(pcd, surface=None):
pcd = filter_pcd(pcd)
if len(pcd.points) > 2:
mesh, _ = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
pcd, depth=9)
return mesh
else:
return o3d.geometry.TriangleMesh()

def triangulation(pcd, data):
pcd_surf = pcd.select_by_index(data['point_indices'])

mesh = o3d.geometry.TriangleMesh()

if len(pcd_surf.points) > 0:
surface = SurfaceFactory.fromDict(data)
if surface is not None:
proj_points, _, proj_params = surface.projectPointsOnGeometry(np.asarray(pcd_surf.points))
data['point_parameters'] = proj_params
if PROJECT_POINTS:
pcd_surf.points = o3d.utility.Vector3dVector(proj_points)

mesh = bpa_triangulation(pcd_surf, surface=data)

return mesh

def triangulation_by_surface(pcd, surfaces_data):
func = partial(triangulation, pcd)
result = thread_map(func, surfaces_data, max_workers=MAX_WORKERS, chunksize=1)

final_mesh = o3d.geometry.TriangleMesh()
for i, r in enumerate(result):
surfaces_data[i]['vert_indices'] = list(range(len(final_mesh.vertices), len(final_mesh.vertices) + len(r.vertices)))
del surfaces_data[i]['vert_parameters'] #missing

surface = SurfaceFactory.fromDict(surfaces_data[i])
if surface is not None:
_, _, proj_params = surface.projectPointsOnGeometry(np.asarray(r.vertices))
surfaces_data[i]['vert_parameters'] = proj_params

surfaces_data[i]['face_indices'] = list(range(len(final_mesh.triangles), len(final_mesh.triangles) + len(r.triangles)))
surfaces_data[i]['point_indices'] = surfaces_data[i]['point_indices'] if type(surfaces_data[i]['point_indices']) is list else surfaces_data[i]['point_indices'].tolist()
if 'point_parameters' in surfaces_data[i]:
surfaces_data[i]['point_parameters'] = surfaces_data[i]['point_parameters'] if type(surfaces_data[i]['point_parameters']) is list else surfaces_data[i]['point_parameters'].tolist()

final_mesh += r

final_mesh.compute_triangle_normals()
return final_mesh

def list_files(input_dir: str, return_str=False) -> list:
files = []
path = Path(input_dir)
for file_path in path.glob('*'):
files.append(file_path if not return_str else str(file_path))
return sorted(files)

def list_filenames(input_dir):
files = list_files(input_dir, return_str=True)
filenames = []
for f in files:
start_index = f.rfind('/')
start_index = start_index if start_index != -1 else 0
final_index = f.rfind('.')
filenames.append(f[(start_index+1):final_index])
return filenames


if __name__ == '__main__':
parser = argparse.ArgumentParser(description='')
parser.add_argument('folder', type=str, help='')
parser.add_argument('-gf','--generate_triangulation_features', action='store_true', help='')
parser.add_argument('-pp','--project_points', action='store_true', help='')
parser.add_argument('-r','--reegenerate', action='store_true', help='')
parser.add_argument('-nf','--no_filter', action='store_true', help='')
parser.add_argument('--filename', type=str, default='', help='')
parser.add_argument('--pc_foldername', type=str, default='pc', help='')
parser.add_argument('--triangulation_foldername', type=str, default='triangulation', help='')
parser.add_argument('--triangulation_features_foldername', type=str, default='triangulation_features', help='')
parser.add_argument('--n_neighbors', type=int, default=N_NEIGHBORS, help='')
parser.add_argument('--leaf_size', type=float, default=LEAF_SIZE, help='')
parser.add_argument('--max_workers', type=int, default=MAX_WORKERS, help='')


args = vars(parser.parse_args())

folder_name = args['folder']
filename = args['filename']
pc_foldername = args['pc_foldername']
triangulation_foldername = args['triangulation_foldername']
triangulation_features_foldername = args['triangulation_features_foldername']
GENERATE_TRIANGULATION_FEATURES = args['generate_triangulation_features']
PROJECT_POINTS = args['project_points']
N_NEIGHBORS = args['n_neighbors']
LEAF_SIZE = args['leaf_size']
MAX_WORKERS = args['max_workers']
FILTER = not args['no_filter']
reegenerate = args['reegenerate']

if not os.path.exists(folder_name) or not os.path.isdir(folder_name):
print('[Generator Error] Input path not found')
exit()

filenames = []
if filename != '':
filenames.append(filename)
else:
filenames = list_filenames(os.path.join(folder_name, 'features'))

if not reegenerate:
filenames_triang = list_filenames(os.path.join(folder_name, triangulation_foldername))
filenames_triang_features = list_filenames(os.path.join(folder_name, triangulation_features_foldername))


diff_1 = set(filenames) - set(filenames_triang)
diff_2 = set(filenames) - set(filenames_triang_features)

if GENERATE_TRIANGULATION_FEATURES:
diff_1 = diff_1.union(diff_2)

filenames = list(diff_1)

os.makedirs(os.path.join(folder_name, triangulation_foldername), exist_ok=True)

if GENERATE_TRIANGULATION_FEATURES:
os.makedirs(os.path.join(folder_name, triangulation_features_foldername), exist_ok=True)

for filename in filenames:
print()
print('Processing file {}:'.format(filename))

pc_filename = join(folder_name, 'pc', filename + '.pcd')

geometry_filename = join(folder_name, 'features', filename + '.json')

pc = pypcd.PointCloud.from_path(pc_filename).pc_data

pointcloud = o3d.geometry.PointCloud()

if 'x' in pc.dtype.names and 'y' in pc.dtype.names and 'z' in pc.dtype.names:
pointcloud.points = o3d.utility.Vector3dVector(np.vstack((pc['x'], pc['y'], pc['z'])).T)
else:
print('there is no point in the input pointcloud')
exit()

if 'normal_x' in pc.dtype.names and 'normal_y' in pc.dtype.names and 'normal_z' in pc.dtype.names:
pointcloud.normals = o3d.utility.Vector3dVector(np.vstack((pc['normal_x'], pc['normal_y'], pc['normal_z'])).T)
else:
print('there is no normal in the input pointcloud')

has_labels = False

if 'label' in pc.dtype.names:
labels = pc['label']
has_labels = True
else:
print('there is no label in the input pointcloud')


with open(geometry_filename, 'r') as f:
geometry_data = json.load(f)
surfaces_data = geometry_data['surfaces']

if has_labels:
labels, fpi = computeLabelsFromFace2Primitive(labels, surfaces_data)
for i in range(len(fpi)):
surfaces_data[i]['point_indices'] = fpi[i]

if not pointcloud.has_normals():
pointcloud.estimate_normals()

mesh = triangulation_by_surface(pointcloud, surfaces_data)
igl.write_triangle_mesh(os.path.join(folder_name, triangulation_foldername, filename + '.obj'), np.asarray(mesh.vertices), np.asarray(mesh.triangles))

if GENERATE_TRIANGULATION_FEATURES:
features = {'surfaces': surfaces_data}
with open(os.path.join(folder_name, triangulation_features_foldername, filename + '.json'), 'w') as f:
json.dump(features, f, indent=4)