Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@ fsspec==2025.9.0
# via
# huggingface-hub
# torch
geocalib @ git+https://github.com/cvg/GeoCalib.git
gsplat==1.5.3
# via sharp
hf-xet==1.1.10 ; platform_machine == 'aarch64' or platform_machine == 'amd64' or platform_machine == 'arm64' or platform_machine == 'x86_64'
Expand Down
62 changes: 60 additions & 2 deletions src/sharp/cli/predict.py
Original file line number Diff line number Diff line change
Expand Up @@ -345,6 +345,18 @@ def _center_crop(img: np.ndarray, target_h: int, target_w: int) -> np.ndarray:
default=False,
help="Compute PLY export conversions in fp32 (even if inference uses AMP).",
)
@click.option(
"--geocalib",
is_flag=True,
default=False,
help="Enable GeoCalib focal length estimation.",
)
@click.option(
"--geocalib-per-folder",
is_flag=True,
default=False,
help="Run GeoCalib once per folder and reuse for images in that folder.",
)
@click.option(
"--device",
type=str,
Expand Down Expand Up @@ -398,6 +410,8 @@ def predict_cli(
skip_world_conversion: bool,
defer_world_conversion_for_export: bool,
export_fp32: bool,
geocalib: bool,
geocalib_per_folder: bool,
device: str,
amp: bool | None,
amp_dtype: str,
Expand Down Expand Up @@ -425,6 +439,9 @@ def predict_cli(
return
if batch_size < 1:
raise click.ClickException("--batch-size must be >= 1.")
if geocalib_per_folder and not geocalib:
LOGGER.warning("--geocalib-per-folder ignored because --geocalib was not set.")
geocalib_per_folder = False

def _natural_sort_key(path: Path) -> list[tuple[int, object]]:
relative_path = path.relative_to(input_path).as_posix()
Expand Down Expand Up @@ -484,6 +501,30 @@ def _natural_sort_key(path: Path) -> list[tuple[int, object]]:
LOGGER.warning("Can only run rendering with gsplat on CUDA. Rendering is disabled.")
with_rendering = False

geocalib_runner = None
folder_fpx_cache: dict[Path, float] = {}
if geocalib:
from sharp.utils.geocalib import GeoCalibRunner

geocalib_device = torch.device("cpu" if device == "mps" else device)
geocalib_runner = GeoCalibRunner(geocalib_device)
if geocalib_per_folder and input_is_dir:
folder_map: dict[Path, list[Path]] = {}
for path in image_paths:
folder_map.setdefault(path.parent, []).append(path)
for folder, folder_images in folder_map.items():
try:
f_px_folder = geocalib_runner.calibrate_folder(folder_images)
except Exception as exc: # pragma: no cover - best-effort fallback
LOGGER.warning(
"GeoCalib folder calibration failed for %s: %s. Falling back to EXIF/default.",
folder,
exc,
)
continue
folder_fpx_cache[folder] = f_px_folder
LOGGER.info("GeoCalib folder focal computed: %s -> %.2f", folder, f_px_folder)

# Load or download checkpoint
if checkpoint_path is None:
LOGGER.info("No checkpoint provided. Downloading default model from %s", DEFAULT_MODEL_URL)
Expand Down Expand Up @@ -738,6 +779,21 @@ def _finalize_prediction(
LOGGER.info("Skipping .ply save because --no-save-ply was requested.")
metrics.add_time("per_image_total", perf_counter() - image_start)

def _resolve_f_px(image_path: Path, f_px_exif: float) -> float:
if geocalib_runner is None:
return f_px_exif
if geocalib_per_folder and input_is_dir:
return folder_fpx_cache.get(image_path.parent, f_px_exif)
try:
return geocalib_runner.calibrate_image(image_path)
except Exception as exc: # pragma: no cover - best-effort fallback
LOGGER.warning(
"GeoCalib failed for %s: %s. Falling back to EXIF/default.",
image_path,
exc,
)
return f_px_exif

run_start = perf_counter()
try:
if batch_size <= 1 or len(image_paths) == 1:
Expand All @@ -749,11 +805,12 @@ def _finalize_prediction(
LOGGER.info("Processing %s (%d/%d)", image_path, index, len(image_paths))
io_start = perf_counter()
try:
image, _, f_px = io.load_rgb(image_path)
image, _, f_px_exif = io.load_rgb(image_path)
except (OSError, UnidentifiedImageError, ValueError) as exc:
LOGGER.warning("Skipping unreadable image %s: %s", image_path, exc)
continue
metrics.add_time("io_decode", perf_counter() - io_start)
f_px = _resolve_f_px(image_path, f_px_exif)
height, width = image.shape[:2]
intrinsics = torch.tensor(
[
Expand Down Expand Up @@ -834,11 +891,12 @@ def _finalize_prediction(
LOGGER.info("Processing %s (%d/%d)", image_path, index, total_images)
io_start = perf_counter()
try:
image, _, f_px = io.load_rgb(image_path)
image, _, f_px_exif = io.load_rgb(image_path)
except (OSError, UnidentifiedImageError, ValueError) as exc:
LOGGER.warning("Skipping unreadable image %s: %s", image_path, exc)
continue
metrics.add_time("io_decode", perf_counter() - io_start)
f_px = _resolve_f_px(image_path, f_px_exif)
height, width = image.shape[:2]
intrinsics = torch.tensor(
[
Expand Down
66 changes: 66 additions & 0 deletions src/sharp/utils/geocalib.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
"""GeoCalib adapter for focal length estimation."""

from __future__ import annotations

import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Any

import torch

LOGGER = logging.getLogger(__name__)


def _get_attr(obj: object, name: str) -> Any | None:
if isinstance(obj, dict):
return obj.get(name)
return getattr(obj, name, None)


def _extract_f_px(calibration: object) -> float:
camera = _get_attr(calibration, "camera")
if camera is None and isinstance(calibration, dict):
camera = calibration.get("camera")
if camera is None:
camera = calibration
fx = _get_attr(camera, "fx")
fy = _get_attr(camera, "fy")
if fx is not None and fy is not None:
return float((fx + fy) / 2.0)
f = _get_attr(camera, "f")
if f is None and isinstance(calibration, dict):
f = calibration.get("f")
if f is not None:
return float(f)
raise RuntimeError("GeoCalib calibration did not include focal length values.")


@dataclass
class GeoCalibRunner:
device: torch.device
_model: Any = field(init=False, repr=False)

def __post_init__(self) -> None:
from geocalib import GeoCalib

self._model = GeoCalib()
if hasattr(self._model, "to"):
self._model = self._model.to(self.device)

def calibrate_image(self, image_path: Path) -> float:
image = self._model.load_image(str(image_path))
if hasattr(image, "to"):
image = image.to(self.device)
calibration = self._model.calibrate(image)
return _extract_f_px(calibration)

def calibrate_folder(self, image_paths: list[Path]) -> float:
images = []
for path in image_paths:
image = self._model.load_image(str(path))
if hasattr(image, "to"):
image = image.to(self.device)
images.append(image)
calibration = self._model.calibrate(images, shared_intrinsics=True)
return _extract_f_px(calibration)