Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
250 changes: 250 additions & 0 deletions .ipynb_checkpoints/lab-python-functions-checkpoint.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,250 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "25d7736c-ba17-4aff-b6bb-66eba20fbf4e",
"metadata": {},
"source": [
"# Lab | Functions"
]
},
{
"cell_type": "markdown",
"id": "0c581062-8967-4d93-b06e-62833222f930",
"metadata": {
"tags": []
},
"source": [
"## Exercise: Managing Customer Orders with Functions\n",
"\n",
"In the previous exercise, you improved the code for managing customer orders by using loops and flow control. Now, let's take it a step further and refactor the code by introducing functions.\n",
"\n",
"Follow the steps below to complete the exercise:\n",
"\n",
"1. Define a function named `initialize_inventory` that takes `products` as a parameter. Inside the function, implement the code for initializing the inventory dictionary using a loop and user input.\n",
"\n",
"2. Define a function named `get_customer_orders` that takes no parameters. Inside the function, implement the code for prompting the user to enter the product names using a loop. The function should return the `customer_orders` set.\n",
"\n",
"3. Define a function named `update_inventory` that takes `customer_orders` and `inventory` as parameters. Inside the function, implement the code for updating the inventory dictionary based on the customer orders.\n",
"\n",
"4. Define a function named `calculate_order_statistics` that takes `customer_orders` and `products` as parameters. Inside the function, implement the code for calculating the order statistics (total products ordered, and percentage of unique products ordered). The function should return these values.\n",
"\n",
"5. Define a function named `print_order_statistics` that takes `order_statistics` as a parameter. Inside the function, implement the code for printing the order statistics.\n",
"\n",
"6. Define a function named `print_updated_inventory` that takes `inventory` as a parameter. Inside the function, implement the code for printing the updated inventory.\n",
"\n",
"7. Call the functions in the appropriate sequence to execute the program and manage customer orders.\n",
"\n",
"Hints for functions:\n",
"\n",
"- Consider the input parameters required for each function and their return values.\n",
"- Utilize function parameters and return values to transfer data between functions.\n",
"- Test your functions individually to ensure they work correctly.\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "71347449-f039-4ad9-af88-22d98d1b7e6d",
"metadata": {},
"outputs": [],
"source": [
"#Managing Customer Orders with Functions\n",
"\n",
"products = [\"t-shirt\", \"mug\", \"hat\", \"keychain\"]\n",
"\n",
"def initialize_inventory(products):\n",
" inventory = {}\n",
" for product in products:\n",
" while True:\n",
" try:\n",
" quantity = int(input(f\"Enter quantity available for {product}: \"))\n",
" if quantity < 0:\n",
" print(\"Quantity cannot be negative. Try again.\")\n",
" else:\n",
" inventory [product] = quantity\n",
" break\n",
" except ValueError:\n",
" print(\"Please enter a valid integer.\")\n",
" return inventory"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "7c1019fd-9bfb-44d0-be6a-aad717479087",
"metadata": {},
"outputs": [],
"source": [
"def get_customer_orders():\n",
" customer_orders = set()\n",
" print('\\nEnter product names for the customer order(type \"done\" to finish):')\n",
" \n",
" while True:\n",
" product = input(\"Product name: \").lower()\n",
" if product == \"done\":\n",
" break\n",
" customer_orders.add(product)\n",
"\n",
" return customer_orders"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "ddbc8b2c-b052-42e2-aea4-f7ba44325fdb",
"metadata": {},
"outputs": [],
"source": [
"def update_inventory(customer_orders, inventory):\n",
" for product in customer_orders:\n",
" if product in inventory:\n",
" if inventory[product] > 0:\n",
" inventory[product] -= 1\n",
" else:\n",
" print(f\"{product} is out of stock.\")\n",
" else:\n",
" print(f\"{product} is not sold in this store.\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "ee571327-c5eb-4d06-953a-994c99925e97",
"metadata": {},
"outputs": [],
"source": [
"def calculate_order_statistics(customer_orders, products):\n",
" total_ordered = len(customer_orders)\n",
" unique_products = len(products)\n",
" percentage_unique = (total_ordered / unique_products) * 100\n",
"\n",
" return total_ordered, percentage_unique"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "a4cd77eb-0a52-4140-b991-0eec8812a6d3",
"metadata": {},
"outputs": [],
"source": [
"def print_order_statistics(order_statistics):\n",
" total_ordered, percentage_unique = order_statistics\n",
" print(\"\\nOrder Statistics:\")\n",
" print(f\"Total products ordered: {total_ordered}\")\n",
" print(f\"Percentage of unique products ordered: {percentage_unique:.2f}%\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "eb30bfdc-fdfa-42d8-b5a2-6b659aaf9106",
"metadata": {},
"outputs": [],
"source": [
"def print_updated_inventory(inventory):\n",
" print(\"\\nUpdated Inventory:\")\n",
" for product, quantity in inventory.items():\n",
" print(f\"{product}: {quantity}\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "0b00d2a1-687f-4403-bd08-0fde7be1de92",
"metadata": {},
"outputs": [
{
"name": "stdin",
"output_type": "stream",
"text": [
"Enter quantity available for t-shirt: 4\n",
"Enter quantity available for mug: 6\n",
"Enter quantity available for hat: 4\n",
"Enter quantity available for keychain: 9\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Enter product names for the customer order(type \"done\" to finish):\n"
]
},
{
"name": "stdin",
"output_type": "stream",
"text": [
"Product name: \"t-shirt\"\n",
"Product name: mug\n",
"Product name: hat\n",
"Product name: book\n",
"Product name: keychain\n",
"Product name: done\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\"t-shirt\" is not sold in this store.\n",
"book is not sold in this store.\n",
"\n",
"Order Statistics:\n",
"Total products ordered: 5\n",
"Percentage of unique products ordered: 125.00%\n",
"\n",
"Updated Inventory:\n",
"t-shirt: 4\n",
"mug: 5\n",
"hat: 3\n",
"keychain: 8\n"
]
}
],
"source": [
"#### inventory = {}\n",
"\n",
"inventory = initialize_inventory(products)\n",
"customer_orders = get_customer_orders()\n",
"update_inventory(customer_orders, inventory)\n",
"order_stats = calculate_order_statistics(customer_orders, products)\n",
"print_order_statistics(order_stats)\n",
"print_updated_inventory(inventory)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "66f90397-8076-42e9-86a4-a9e28391520e",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python [conda env:base] *",
"language": "python",
"name": "conda-base-py"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Loading