Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
207 changes: 204 additions & 3 deletions lab-python-functions.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -43,13 +43,214 @@
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "c5be3342-a087-4059-9a43-6d4690a4938d",
"metadata": {},
"outputs": [
{
"name": "stdin",
"output_type": "stream",
"text": [
"Enter the qty of ['t-shirt', 'mug', 'hat', 'book', 'keychain'] 5\n",
"Enter the qty of ['t-shirt', 'mug', 'hat', 'book', 'keychain'] 4\n",
"Enter the qty of ['t-shirt', 'mug', 'hat', 'book', 'keychain'] 2\n",
"Enter the qty of ['t-shirt', 'mug', 'hat', 'book', 'keychain'] 1\n",
"Enter the qty of ['t-shirt', 'mug', 'hat', 'book', 'keychain'] 4\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Initialized Inventory: {'t-shirt': 5, 'mug': 4, 'hat': 2, 'book': 1, 'keychain': 4}\n"
]
}
],
"source": [
"#1\n",
"products = [\"t-shirt\", \"mug\", \"hat\", \"book\", \"keychain\"]\n",
"\n",
"def initialize_inventory(products):\n",
" inventory = {}\n",
" for product in products:\n",
" qty = int(input(f\"Enter the qty of {products}\"))\n",
" inventory [product] = qty\n",
" return inventory \n",
"inventory = initialize_inventory(products)\n",
"print (\"Initialized Inventory:\", inventory)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "3c80f155-9808-48f1-ae6b-5bb6cbf45c2c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"the customer orders are : {'mug', 'hat', 'book'}\n"
]
}
],
"source": [
"#2\n",
"\n",
"def get_customer_orders():\n",
" customer_orders = set()\n",
"\n",
" while True: # Loop continues until break\n",
" product_name = input(\"Enter a product name you would like to order or type 'stop' to finish: \")\n",
" \n",
" # Check if the user entered 'stop', with lowercasing and stripping for safety\n",
" if product_name == \"stop\":\n",
" break # Exit the loop\n",
"\n",
" customer_orders.add(product_name) # Add the product name to the set\n",
" \n",
" return customer_orders\n",
"print(\"the customer orders are :\",customer_orders)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "3dd0392f-975c-4a58-9b36-43cf0fbb17e2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Update_inventory is: {'t-shirt': 5, 'mug': 4, 'hat': 2, 'book': 1, 'keychain': 4}\n"
]
}
],
"source": [
"#3\n",
"\n",
"def update_inventory(customer_orders, inventory):\n",
" for product in customer_orders:\n",
" if product in inventory:\n",
" print(f\"{product} is in stock.\")\n",
" else:\n",
" print(f\"Product {product} not found in inventory.\")\n",
" return inventory \n",
"print (\" Update_inventory is:\", inventory)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "6d6a1a4d-da20-4d93-8c9d-907d199178f8",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"the statistics are: 3 60.0\n"
]
}
],
"source": [
"#4 #5\n",
"\n",
"def calculate_order_statistics (customer_orders, inventory):\n",
" total_products_ordered = len(customer_orders)\n",
" percentage_of_unique_products_ordered = (total_products_ordered / len(products))*100\n",
"\n",
" return total_products_ordered,percentage_of_unique_products_ordered \n",
"\n",
"customer_orders = {'mug', 'hat', 'book'}\n",
"inventory = {'t-shirt': 5, 'mug': 4, 'hat': 2, 'book': 1, 'keychain': 4}\n",
"\n",
"## Call the function and capture its return values\n",
"total_products_ordered, percentage_of_unique_products_ordered = calculate_order_statistics(customer_orders, inventory) \n",
"\n",
"print(\"the statistics are:\",total_products_ordered, percentage_of_unique_products_ordered)\n",
" \n",
" \n",
" \n",
" \n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "81840795-b741-4f79-a28e-b3b565e809f1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" total products ordered are: 3\n",
"percentage of unique products ordered is: 60.0\n"
]
}
],
"source": [
"#5\n",
"\n",
"def print_order_statistics (order_statistics): # tuple ( total products, % unique value)\n",
" print (order_statistics)\n",
"\n",
"print(f\" total products ordered are: {total_products_ordered}\")\n",
"print(f\"percentage of unique products ordered is: {percentage_of_unique_products_ordered}\")"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "384bbc9e-9114-4114-85b8-48935c072932",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Updated Inventory:\n",
"- t-shirt: 5\n",
"- mug: 4\n",
"- hat: 2\n",
"- book: 1\n",
"- keychain: 4\n"
]
}
],
"source": [
"#6\n",
"\n",
"def print_updated_inventory(inventory):# dictionaty key,Values\n",
" print(\"Updated Inventory:\")\n",
" for product, quantity in inventory.items():\n",
" print(f\"- {product}: {quantity}\")\n",
" \n",
"inventory = {'t-shirt': 5, 'mug': 4, 'hat': 2, 'book': 1, 'keychain': 4} \n",
"print_updated_inventory(inventory)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dc01b3c8-eca1-4b97-85b3-c2b851680f68",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "Python [conda env:base] *",
"language": "python",
"name": "python3"
"name": "conda-base-py"
},
"language_info": {
"codemirror_mode": {
Expand All @@ -61,7 +262,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
"version": "3.13.5"
}
},
"nbformat": 4,
Expand Down