Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 11 additions & 3 deletions dask_expr/_expr.py
Original file line number Diff line number Diff line change
Expand Up @@ -1893,21 +1893,29 @@ def _tree_repr_argument_construction(self, i, op, header):
def _node_label_args(self):
return self.operands

def _remove_common_columns(self, other):
if set(self.keys) & set(other.keys):
keys = set(self.keys)
operands = [[k, v] for k, v in zip(other.keys, other.vals) if k not in keys]
return [other.frame] + list(flatten(operands)) + self.operands[1:]
else:
return other.operands + self.operands[1:]

def _simplify_down(self):
if isinstance(self.frame, Assign):
if self._check_for_previously_created_column(self.frame):
# don't squash if we are using a column that was previously created
return
return Assign(*self.frame.operands, *self.operands[1:])
return Assign(*self._remove_common_columns(self.frame))
elif isinstance(self.frame, Projection) and isinstance(
self.frame.frame, Assign
):
if self._check_for_previously_created_column(self.frame.frame):
return
new_columns = self.frame.operands[1].copy()
new_columns.extend(self.keys)
new_columns.extend([k for k in self.keys if k not in new_columns])
return Projection(
Assign(*self.frame.frame.operands, *self.operands[1:]), new_columns
Assign(*self._remove_common_columns(self.frame.frame)), new_columns
)

def _check_for_previously_created_column(self, child):
Expand Down
27 changes: 27 additions & 0 deletions dask_expr/tests/test_collection.py
Original file line number Diff line number Diff line change
Expand Up @@ -2689,6 +2689,33 @@ def apply_func(x):
assert result.expr._depth() == 13.0 # this grew exponentially previously


def test_assign_overwriting_column(df, pdf):
pdf = pd.DataFrame(
{"partner": ["A", np.nan, "C", "A", np.nan, "C", "A", np.nan, "C"]},
dtype="string[pyarrow]",
)

df = from_pandas(pdf, npartitions=2)

df["partner1"] = ""
df["partner1"] = "google"

df["partner2"] = ""
df["partner2"] = np.nan
df["partner2"] = df["partner2"].mask(cond=(df["partner"] == "A"), other="Blackhawk")

pdf["partner1"] = ""
pdf["partner1"] = "google"

pdf["partner2"] = ""
pdf["partner2"] = np.nan
pdf["partner2"] = pdf["partner2"].mask(
cond=(pdf["partner"] == "A"), other="Blackhawk"
)
df.compute()
assert_eq(df, pdf, check_dtype=False)


def test_dropna_merge(df, pdf):
dropped_na = df.dropna(subset=["x"])
result = dropped_na.merge(dropped_na, on="x")
Expand Down
Loading