Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
294 changes: 294 additions & 0 deletions apps/docs/install.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,294 @@
You are integrating Supermemory into my application. Supermemory provides user memory, semantic search, and automatic knowledge extraction for AI applications.

You can always reference the documentation by using the **SearchSupermemoryDocs MCP** or running a web search tool for content on **supermemory.ai/docs**.

## STEP 1: ASK ME THESE QUESTIONS

1. What are you building?
- Personal chatbot/assistant
- Team knowledge base
- Customer support bot
- Document Q&A
- Other

2. How do you want to integrate?
- Vercel AI SDK (@supermemory/tools)
- OpenAI plugins
- Direct SDK (supermemory npm/pip)
- Direct API calls

3. Data model?
- Individual users only → containerTag: userId
- Organizations only → containerTag: orgId
- Both users AND orgs → ask for strategy

4. Do you want USER PROFILES?
User profiles are automatically-maintained facts about users (what they like, what they're working on, preferences).
- Yes (RECOMMENDED) → Use client.profile() to get context
- No → Just use search

5. How should I retrieve context?
- OPTION A: One call with search included → profile({ containerTag, q: userMessage })
- OPTION B: Separate calls → profile() for facts, search() for memories

## STEP 2: INSTALL

```bash
# Get API key: https://console.supermemory.ai
npm install supermemory # or: pip install supermemory
# For Vercel AI SDK: npm install @supermemory/tools
export SUPERMEMORY_API_KEY="sm_..."
```

## STEP 3: CONFIGURE SETTINGS (DO THIS FIRST)

```typescript
// PATCH https://api.supermemory.ai/v3/settings
fetch('https://api.supermemory.ai/v3/settings', {
method: 'PATCH',
headers: { 'x-supermemory-api-key': process.env.SUPERMEMORY_API_KEY },
body: JSON.stringify({
shouldLLMFilter: true,
filterPrompt: `This is a [your app description]. containerTag is [userId/orgId]. We store [what data].`
})
})
```

## STEP 4: CONTAINER TAG STRATEGY

Based on their data model answer:

**USER-ONLY APP:**

```typescript
containerTag: userId
```

**ORG-ONLY APP:**

```typescript
containerTag: orgId // Org members share memories
```

**BOTH (ask which):**
- Option A: `containerTag: \`\${userId}-\${orgId}\``
- Option B: `containerTag: orgId, metadata: { userId }`
- Option C: `containerTag: userId, metadata: { orgId }`

## STEP 5: INTEGRATION CODE

Based on their integration choice:

### VERCEL AI SDK

```typescript
import { streamText } from 'ai'
import { anthropic } from '@ai-sdk/anthropic'
import { supermemoryTools } from '@supermemory/tools/ai-sdk'

// Option 1: Agent tools (recommended for agentic flows)
const result = await streamText({
model: anthropic('claude-3-5-sonnet-20241022'),
prompt: userMessage,
tools: supermemoryTools(process.env.SUPERMEMORY_API_KEY, {
containerTags: [userId]
})
})
// Agent gets searchMemories, addMemory, fetchMemory tools

// Option 2: Profile middleware (automatic context injection)
import { withSupermemory } from '@supermemory/tools/ai-sdk'
const modelWithMemory = withSupermemory(anthropic('claude-3-5-sonnet-20241022'), userId)

const result = await generateText({
model: modelWithMemory,
messages: [{ role: 'user', content: userMessage }]
})
// Profile is automatically injected into context
```

### DIRECT SDK (WITH PROFILES)

```typescript
import Supermemory from 'supermemory'

const client = new Supermemory()

// Before each LLM call:
const { profile, searchResults } = await client.profile({
containerTag: userId,
q: userMessage // Include this if they chose OPTION A (one call)
// Omit if they chose OPTION B (separate calls)
})

// Build context
const context = `
Static facts: ${profile.static.join('\n')}
Recent context: ${profile.dynamic.join('\n')}
${searchResults ? `Memories: ${searchResults.results.map(r => r.content).join('\n')}` : ''}
`

// Send to LLM
const messages = [
{ role: 'system', content: `User context:\n${context}` },
{ role: 'user', content: userMessage }
]

// After LLM responds:
await client.memories.add({
content: `user: ${userMessage}\nassistant: ${response}`,
containerTag: userId
})
```

### DIRECT SDK (NO PROFILES)

```typescript
import Supermemory from 'supermemory'

const client = new Supermemory()

// Search for relevant memories
const results = await client.search({
q: userMessage,
containerTag: userId,
searchMode: 'hybrid', // Searches memories + document chunks
limit: 5
})

// Build context
const context = results.results.map(r => r.content).join('\n')

// Send to LLM with context
const messages = [
{ role: 'system', content: `Relevant context:\n${context}` },
{ role: 'user', content: userMessage }
]

// Store the conversation
await client.memories.add({
content: `user: ${userMessage}\nassistant: ${response}`,
containerTag: userId
})
```

### PYTHON VERSION

```python
from supermemory import Supermemory

client = Supermemory()

# With profiles (if they want it)
profile_data = client.profile(
container_tag=user_id,
q=user_message # Include if OPTION A, omit if OPTION B
)

context = f"""
Static: {chr(10).join(profile_data.profile.static)}
Dynamic: {chr(10).join(profile_data.profile.dynamic)}
"""

# Store conversation
client.add(content=f"user: {user_message}\\nassistant: {response}", container_tag=user_id)
```

### DIRECT API

```bash
# Add memory
curl -X POST https://api.supermemory.ai/v3/documents \
-H "x-supermemory-api-key: $SUPERMEMORY_API_KEY" \
-d '{"content": "conversation", "containerTag": "userId"}'

# Get profile
curl -X POST https://api.supermemory.ai/v4/profile \
-H "x-supermemory-api-key: $SUPERMEMORY_API_KEY" \
-d '{"containerTag": "userId", "q": "search query"}'

# Search
curl -X POST https://api.supermemory.ai/v4/search \
-H "x-supermemory-api-key: $SUPERMEMORY_API_KEY" \
-d '{"q": "query", "containerTag": "userId", "searchMode": "hybrid"}'
```

## STEP 6: FILE UPLOADS (if they need it)

```typescript
// Files are automatically extracted (PDFs, images with OCR, videos with transcription)
const formData = new FormData()
formData.append('file', fileBlob)
formData.append('containerTag', userId)

await fetch('https://api.supermemory.ai/v3/documents/file', {
method: 'POST',
headers: { 'x-supermemory-api-key': process.env.SUPERMEMORY_API_KEY },
body: formData
})

// Processing is async - check status before assuming searchable
// GET /v3/documents/{documentId}
```

## STEP 7: SEARCH MODES

```typescript
// HYBRID (recommended) - searches memories + document chunks
searchMode: 'hybrid'

// MEMORIES ONLY - just extracted memories, no original text
searchMode: 'memories'
```

## STEP 8: METADATA FILTERS (if they need secondary filtering)

```typescript
await client.search({
q: query,
containerTag: userId,
filters: {
AND: [
{ key: 'type', value: 'conversation', type: 'string_equal' },
{ key: 'timestamp', value: '2024', type: 'string_contains' }
]
}
})
```

## KEY POINTS:

1. Configure settings FIRST with filterPrompt
2. User profiles = automatic facts about users (profile.static + profile.dynamic)
3. profile({ containerTag, q }) combines profile + search in ONE call
4. Search modes: 'hybrid' (recommended) or 'memories'
5. File extraction is automatic - no config needed
6. Store conversations after each interaction
7. containerTag should match what you put in filterPrompt

## TESTING:

```bash
# 1. Configure settings
curl -X PATCH https://api.supermemory.ai/v3/settings \
-H "x-supermemory-api-key: $SUPERMEMORY_API_KEY" \
-d '{"shouldLLMFilter": true, "filterPrompt": "..."}'

# 2. Add test memory
curl -X POST https://api.supermemory.ai/v3/documents \
-H "x-supermemory-api-key: $SUPERMEMORY_API_KEY" \
-d '{"content": "Test", "containerTag": "test_user"}'

# 3. Get profile
curl -X POST https://api.supermemory.ai/v4/profile \
-H "x-supermemory-api-key: $SUPERMEMORY_API_KEY" \
-d '{"containerTag": "test_user"}'
```

## NOW:

1. Ask me the 5 questions above
2. Generate complete working code based on my answers
3. Include installation, settings config, and full integration

**DOCS:** https://supermemory.ai/docs
4 changes: 2 additions & 2 deletions apps/mcp/package.json
Original file line number Diff line number Diff line change
Expand Up @@ -9,8 +9,8 @@
},
"dependencies": {
"@cloudflare/workers-oauth-provider": "^0.2.2",
"@modelcontextprotocol/sdk": "^1.12.1",
"agents": "^0.2.32",
"@modelcontextprotocol/sdk": "^1.25.2",
"agents": "^0.3.5",
"hono": "^4.11.1",
"posthog-node": "^5.18.0",
"supermemory": "^4.0.0",
Expand Down
5 changes: 3 additions & 2 deletions apps/mcp/src/index.ts
Original file line number Diff line number Diff line change
@@ -1,8 +1,9 @@
import { Hono } from "hono"
import { cors } from "hono/cors"
import { Hono } from "hono"
import { SupermemoryMCP } from "./server"
import { isApiKey, validateApiKey, validateOAuthToken } from "./auth"
import { initPosthog } from "./posthog"
import type { ContentfulStatusCode } from "hono/utils/http-status"

type Bindings = {
MCP_SERVER: DurableObjectNamespace
Expand Down Expand Up @@ -78,7 +79,7 @@ app.get("/.well-known/oauth-authorization-server", async (c) => {
if (!response.ok) {
return c.json(
{ error: "Failed to fetch authorization server metadata" },
response.status,
{ status: response.status as ContentfulStatusCode },
)
}

Expand Down
Loading
Loading