Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 40 additions & 0 deletions bitsandbytes/nn/modules.py
Original file line number Diff line number Diff line change
Expand Up @@ -356,6 +356,46 @@ def to(self, *args, **kwargs):

return new_param

@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}

if func in [torch.chunk, torch.split]:
tensor = args[0]

result = super().__torch_function__(func, types, args, kwargs)

if isinstance(result, tuple):
return tuple(
cls(
data=chunk,
requires_grad=tensor.requires_grad,
quant_state=tensor.quant_state,
blocksize=tensor.blocksize,
compress_statistics=tensor.compress_statistics,
quant_type=tensor.quant_type,
quant_storage=tensor.quant_storage,
module=tensor.module,
bnb_quantized=tensor.bnb_quantized,
)
for chunk in result
)
else:
return cls(
data=result,
requires_grad=tensor.requires_grad,
quant_state=tensor.quant_state,
blocksize=tensor.blocksize,
compress_statistics=tensor.compress_statistics,
quant_type=tensor.quant_type,
quant_storage=tensor.quant_storage,
module=tensor.module,
bnb_quantized=tensor.bnb_quantized,
)

return super().__torch_function__(func, types, args, kwargs)


def fix_4bit_weight_quant_state_from_module(module: Union["Embedding4bit", "Linear4bit"]):
if getattr(module.weight, "quant_state", None) is not None:
Expand Down
35 changes: 35 additions & 0 deletions tests/test_linear4bit.py
Original file line number Diff line number Diff line change
Expand Up @@ -212,6 +212,41 @@ def test_copy_param(device, quant_type, blocksize, compress_statistics):
assert param.data.data_ptr() == shallow_copy_param.data.data_ptr()


@pytest.mark.parametrize("device", get_available_devices())
@pytest.mark.parametrize("quant_type", ["nf4", "fp4"])
def test_params4bit_torch_chunk_split(device, quant_type):
"""Test that torch.chunk and torch.split preserve Params4bit subclass for FSDP2 compatibility."""
if device == "hpu" and not is_supported_on_hpu(quant_type, torch.float16, torch.uint8):
pytest.skip("This configuration is not supported on HPU.")

if device == "cpu":
pytest.skip("CPU quantization causes segfault, skipping CPU test")

original_tensor = torch.randn(8, 4, dtype=torch.float16, device="cpu")

params4bit = bnb.nn.Params4bit(data=original_tensor, quant_type=quant_type, requires_grad=False)

if device != "cpu":
params4bit = params4bit.to(device)

chunks = torch.chunk(params4bit, 2, dim=0)

assert isinstance(chunks, tuple), "torch.chunk should return tuple"
for chunk in chunks:
assert isinstance(chunk, bnb.nn.Params4bit), "Chunk should preserve Params4bit subclass"
assert hasattr(chunk, "quant_type"), "Should preserve metadata"
assert chunk.quant_type == params4bit.quant_type, "Should preserve quant_type value"

splits = torch.split(params4bit, 2, dim=0)

assert isinstance(splits, tuple), "torch.split should return tuple"
assert len(splits) > 0, "Should have at least one split"
for split in splits:
assert isinstance(split, bnb.nn.Params4bit), "Split should preserve Params4bit subclass"
assert hasattr(split, "quant_type"), "Should preserve metadata"
assert split.quant_type == params4bit.quant_type, "Should preserve quant_type value"


@pytest.mark.parametrize("device", get_available_devices())
@pytest.mark.parametrize("quant_type", ["nf4", "fp4"])
@pytest.mark.parametrize("blocksize", [64, 128] if not HIP_ENVIRONMENT else [128])
Expand Down
Loading