Skip to content

Toepfer-Lab/MLDynamicMetabolicControl

Repository files navigation

MLDynamicMetabolicControl

This repository will be used to attempt to recreate the paper "Linking intra- and extra-cellular metabolic domains via neural-network surrogates for dynamic metabolic control" by Sebastian Espinel-Rıos and Jose L. Avalos.

Batch-friendly scripts

The notebook workflow was split into standalone scripts that can be launched locally or on RAMSES via sbatch. Run them from the repo root:

  • Generate FBA data: python scripts/generate_fba_data.py --vman PYK --condition anaerobic --n-samples 1000
  • Train surrogate NN: python scripts/train_surrogate.py --vman PYK --condition anaerobic --hidden-dim 4 --epochs 5000
  • Simulate hybrid model: python scripts/run_hybrid_simulation.py --checkpoint trained_models/<file>.pt --vman-value 5.0
  • Optimize vman: python scripts/optimize_vman.py --checkpoint trained_models/<file>.pt --num-intervals 20 --log-trajectories

Quick sbatch example (adjust modules/conda as needed):

sbatch --job-name fba_gen --wrap "python scripts/generate_fba_data.py --vman PYK --condition anaerobic"

About

Dynamic Metabolic Control using Neural Net Surrogates

Resources

License

Stars

Watchers

Forks

Contributors 2

  •  
  •