|
| 1 | +package com.thealgorithms.tree; |
| 2 | + |
| 3 | +import java.util.ArrayList; |
| 4 | +import java.util.List; |
| 5 | +import java.util.NoSuchElementException; |
| 6 | + |
| 7 | +/** |
| 8 | + * AVL (Adelson-Velsky and Landis) Tree is a self-balancing Binary Search Tree. |
| 9 | + * Operations supported: |
| 10 | + * - insert, delete, search |
| 11 | + * - inorder, preorder, postorder traversal |
| 12 | + * - findMin(), findMax() |
| 13 | + * |
| 14 | + * Properties: |
| 15 | + * - For every node: |height(left) - height(right)| <= 1 |
| 16 | + * - Maintains O(log n) time complexity for insert/delete/search |
| 17 | + */ |
| 18 | +public class AVL { |
| 19 | + |
| 20 | + /** |
| 21 | + * Inner class to represent a node in AVL Tree |
| 22 | + */ |
| 23 | + private static class Node { |
| 24 | + int key; |
| 25 | + int height; |
| 26 | + Node left; |
| 27 | + Node right; |
| 28 | + |
| 29 | + Node(int key) { |
| 30 | + this.key = key; |
| 31 | + this.height = 1; // New node starts as a leaf node with height = 1 |
| 32 | + } |
| 33 | + } |
| 34 | + |
| 35 | + // Root node of the AVL Tree |
| 36 | + private Node root; |
| 37 | + |
| 38 | + // Constructor |
| 39 | + public AVL() { |
| 40 | + root = null; |
| 41 | + } |
| 42 | + |
| 43 | + /* ======================== PUBLIC METHODS ======================== */ |
| 44 | + |
| 45 | + /** Insert a key into the AVL Tree */ |
| 46 | + public void insert(int key) { |
| 47 | + root = insertRecursive(root, key); |
| 48 | + } |
| 49 | + |
| 50 | + /** Delete a key from the AVL Tree */ |
| 51 | + public void delete(int key) { |
| 52 | + root = deleteRecursive(root, key); |
| 53 | + } |
| 54 | + |
| 55 | + /** Search a key in the AVL Tree */ |
| 56 | + public boolean search(int key) { |
| 57 | + return searchRecursive(root, key); |
| 58 | + } |
| 59 | + |
| 60 | + /** Return the smallest key in the AVL Tree */ |
| 61 | + public int findMin() { |
| 62 | + if (root == null) throw new NoSuchElementException("AVL Tree is empty"); |
| 63 | + return findMinNode(root).key; |
| 64 | + } |
| 65 | + |
| 66 | + /** Return the largest key in the AVL Tree */ |
| 67 | + public int findMax() { |
| 68 | + if (root == null) throw new NoSuchElementException("AVL Tree is empty"); |
| 69 | + Node cur = root; |
| 70 | + while (cur.right != null) cur = cur.right; |
| 71 | + return cur.key; |
| 72 | + } |
| 73 | + |
| 74 | + /** Print nodes in Inorder (sorted order) */ |
| 75 | + public void printInorder() { |
| 76 | + System.out.print("Inorder: "); |
| 77 | + printInorderRecursive(root); |
| 78 | + System.out.println(); |
| 79 | + } |
| 80 | + |
| 81 | + /** Print nodes in Preorder (Root → Left → Right) */ |
| 82 | + public void printPreorder() { |
| 83 | + System.out.print("Preorder: "); |
| 84 | + printPreorderRecursive(root); |
| 85 | + System.out.println(); |
| 86 | + } |
| 87 | + |
| 88 | + /** Print nodes in Postorder (Left → Right → Root) */ |
| 89 | + public void printPostorder() { |
| 90 | + System.out.print("Postorder: "); |
| 91 | + printPostorderRecursive(root); |
| 92 | + System.out.println(); |
| 93 | + } |
| 94 | + |
| 95 | + /** Return Inorder list (useful for testing) */ |
| 96 | + public List<Integer> inorderList() { |
| 97 | + List<Integer> res = new ArrayList<>(); |
| 98 | + inorderToList(root, res); |
| 99 | + return res; |
| 100 | + } |
| 101 | + |
| 102 | + /** Return Preorder list (useful for testing) */ |
| 103 | + public List<Integer> preorderList() { |
| 104 | + List<Integer> res = new ArrayList<>(); |
| 105 | + preorderToList(root, res); |
| 106 | + return res; |
| 107 | + } |
| 108 | + |
| 109 | + /** Return Postorder list (useful for testing) */ |
| 110 | + public List<Integer> postorderList() { |
| 111 | + List<Integer> res = new ArrayList<>(); |
| 112 | + postorderToList(root, res); |
| 113 | + return res; |
| 114 | + } |
| 115 | + |
| 116 | + |
| 117 | + /** |
| 118 | + * Recursive insert: |
| 119 | + * 1. Insert key like a normal BST |
| 120 | + * 2. Update height of current node |
| 121 | + * 3. Balance the node if it became unbalanced |
| 122 | + */ |
| 123 | + private Node insertRecursive(Node node, int key) { |
| 124 | + // Step 1: Perform standard BST insert |
| 125 | + if (node == null) return new Node(key); |
| 126 | + |
| 127 | + if (key < node.key) |
| 128 | + node.left = insertRecursive(node.left, key); |
| 129 | + else if (key > node.key) |
| 130 | + node.right = insertRecursive(node.right, key); |
| 131 | + else |
| 132 | + return node; // Duplicates not allowed |
| 133 | + |
| 134 | + // Step 2: Update height of ancestor node |
| 135 | + updateHeight(node); |
| 136 | + |
| 137 | + // Step 3: Balance the node and return new root |
| 138 | + return balanceNode(node); |
| 139 | + } |
| 140 | + |
| 141 | + /** |
| 142 | + * Recursive delete: |
| 143 | + * 1. Perform normal BST delete |
| 144 | + * 2. Update height of current node |
| 145 | + * 3. Balance it if necessary |
| 146 | + */ |
| 147 | + private Node deleteRecursive(Node node, int key) { |
| 148 | + if (node == null) return null; |
| 149 | + |
| 150 | + // Step 1: Perform BST delete |
| 151 | + if (key < node.key) |
| 152 | + node.left = deleteRecursive(node.left, key); |
| 153 | + else if (key > node.key) |
| 154 | + node.right = deleteRecursive(node.right, key); |
| 155 | + else { |
| 156 | + // Node found |
| 157 | + if (node.left == null || node.right == null) { |
| 158 | + Node temp = (node.left != null) ? node.left : node.right; |
| 159 | + |
| 160 | + // No child case |
| 161 | + if (temp == null) { |
| 162 | + node = null; |
| 163 | + } else { |
| 164 | + node = temp; |
| 165 | + } |
| 166 | + } else { |
| 167 | + // Node with two children → get inorder successor |
| 168 | + Node successor = findMinNode(node.right); |
| 169 | + node.key = successor.key; |
| 170 | + node.right = deleteRecursive(node.right, successor.key); |
| 171 | + } |
| 172 | + } |
| 173 | + |
| 174 | + // If tree had only one node |
| 175 | + if (node == null) return null; |
| 176 | + |
| 177 | + // Step 2: Update height |
| 178 | + updateHeight(node); |
| 179 | + |
| 180 | + // Step 3: Rebalance node |
| 181 | + return balanceNode(node); |
| 182 | + } |
| 183 | + |
| 184 | + /** Recursive search like normal BST */ |
| 185 | + private boolean searchRecursive(Node node, int key) { |
| 186 | + if (node == null) return false; |
| 187 | + if (key == node.key) return true; |
| 188 | + return key < node.key ? searchRecursive(node.left, key) : searchRecursive(node.right, key); |
| 189 | + } |
| 190 | + |
| 191 | + /** Find node with minimum key */ |
| 192 | + private Node findMinNode(Node node) { |
| 193 | + Node cur = node; |
| 194 | + while (cur.left != null) cur = cur.left; |
| 195 | + return cur; |
| 196 | + } |
| 197 | + |
| 198 | + /* ======================== ROTATIONS & BALANCING ======================== */ |
| 199 | + |
| 200 | + /** Right rotation (used in LL or LR imbalance) */ |
| 201 | + private Node rightRotate(Node y) { |
| 202 | + Node x = y.left; |
| 203 | + Node T2 = x.right; |
| 204 | + |
| 205 | + // Perform rotation |
| 206 | + x.right = y; |
| 207 | + y.left = T2; |
| 208 | + |
| 209 | + // Update heights |
| 210 | + updateHeight(y); |
| 211 | + updateHeight(x); |
| 212 | + |
| 213 | + return x; // New root |
| 214 | + } |
| 215 | + |
| 216 | + /** Left rotation (used in RR or RL imbalance) */ |
| 217 | + private Node leftRotate(Node x) { |
| 218 | + Node y = x.right; |
| 219 | + Node T2 = y.left; |
| 220 | + |
| 221 | + // Perform rotation |
| 222 | + y.left = x; |
| 223 | + x.right = T2; |
| 224 | + |
| 225 | + // Update heights |
| 226 | + updateHeight(x); |
| 227 | + updateHeight(y); |
| 228 | + |
| 229 | + return y; // New root |
| 230 | + } |
| 231 | + |
| 232 | + /** |
| 233 | + * Balances a node by checking its balance factor: |
| 234 | + * |
| 235 | + * - If > 1 → left heavy |
| 236 | + * - If < -1 → right heavy |
| 237 | + * |
| 238 | + * Depending on the case, we do: |
| 239 | + * - LL → Right Rotate |
| 240 | + * - RR → Left Rotate |
| 241 | + * - LR → Left Rotate child + Right Rotate |
| 242 | + * - RL → Right Rotate child + Left Rotate |
| 243 | + */ |
| 244 | + private Node balanceNode(Node node) { |
| 245 | + int balance = getBalance(node); |
| 246 | + |
| 247 | + // Case 1: Left Left (LL) |
| 248 | + if (balance > 1 && getBalance(node.left) >= 0) |
| 249 | + return rightRotate(node); |
| 250 | + |
| 251 | + // Case 2: Left Right (LR) |
| 252 | + if (balance > 1 && getBalance(node.left) < 0) { |
| 253 | + node.left = leftRotate(node.left); |
| 254 | + return rightRotate(node); |
| 255 | + } |
| 256 | + |
| 257 | + // Case 3: Right Right (RR) |
| 258 | + if (balance < -1 && getBalance(node.right) <= 0) |
| 259 | + return leftRotate(node); |
| 260 | + |
| 261 | + // Case 4: Right Left (RL) |
| 262 | + if (balance < -1 && getBalance(node.right) > 0) { |
| 263 | + node.right = rightRotate(node.right); |
| 264 | + return leftRotate(node); |
| 265 | + } |
| 266 | + |
| 267 | + return node; // Already balanced |
| 268 | + } |
| 269 | + |
| 270 | + /* ======================== HELPER FUNCTIONS ======================== */ |
| 271 | + |
| 272 | + /** Returns height of a node */ |
| 273 | + private int height(Node node) { |
| 274 | + return node == null ? 0 : node.height; |
| 275 | + } |
| 276 | + |
| 277 | + /** Updates height of a node based on its children */ |
| 278 | + private void updateHeight(Node node) { |
| 279 | + node.height = 1 + Math.max(height(node.left), height(node.right)); |
| 280 | + } |
| 281 | + |
| 282 | + /** Calculates balance factor = height(left) - height(right) */ |
| 283 | + private int getBalance(Node node) { |
| 284 | + return node == null ? 0 : height(node.left) - height(node.right); |
| 285 | + } |
| 286 | + |
| 287 | + /* ======================== TRAVERSALS ======================== */ |
| 288 | + |
| 289 | + private void printInorderRecursive(Node node) { |
| 290 | + if (node == null) return; |
| 291 | + printInorderRecursive(node.left); |
| 292 | + System.out.print(node.key + " "); |
| 293 | + printInorderRecursive(node.right); |
| 294 | + } |
| 295 | + |
| 296 | + private void printPreorderRecursive(Node node) { |
| 297 | + if (node == null) return; |
| 298 | + System.out.print(node.key + " "); |
| 299 | + printPreorderRecursive(node.left); |
| 300 | + printPreorderRecursive(node.right); |
| 301 | + } |
| 302 | + |
| 303 | + private void printPostorderRecursive(Node node) { |
| 304 | + if (node == null) return; |
| 305 | + printPostorderRecursive(node.left); |
| 306 | + printPostorderRecursive(node.right); |
| 307 | + System.out.print(node.key + " "); |
| 308 | + } |
| 309 | + |
| 310 | + private void inorderToList(Node node, List<Integer> out) { |
| 311 | + if (node == null) return; |
| 312 | + inorderToList(node.left, out); |
| 313 | + out.add(node.key); |
| 314 | + inorderToList(node.right, out); |
| 315 | + } |
| 316 | + |
| 317 | + private void preorderToList(Node node, List<Integer> out) { |
| 318 | + if (node == null) return; |
| 319 | + out.add(node.key); |
| 320 | + preorderToList(node.left, out); |
| 321 | + preorderToList(node.right, out); |
| 322 | + } |
| 323 | + |
| 324 | + private void postorderToList(Node node, List<Integer> out) { |
| 325 | + if (node == null) return; |
| 326 | + postorderToList(node.left, out); |
| 327 | + postorderToList(node.right, out); |
| 328 | + out.add(node.key); |
| 329 | + } |
| 330 | + |
| 331 | + public static void main(String[] args) { |
| 332 | + AVL avl = new AVL(); |
| 333 | + |
| 334 | + int[] values = {30, 20, 40, 10, 25, 35, 50, 5, 15, 27, 45, 60}; |
| 335 | + |
| 336 | + // Insert all values one by one |
| 337 | + for (int v : values) avl.insert(v); |
| 338 | + |
| 339 | + // Display traversals |
| 340 | + avl.printInorder(); // should show sorted order |
| 341 | + avl.printPreorder(); |
| 342 | + avl.printPostorder(); |
| 343 | + |
| 344 | + // Display traversal lists |
| 345 | + System.out.println("Inorder List: " + avl.inorderList()); |
| 346 | + System.out.println("Preorder List: " + avl.preorderList()); |
| 347 | + System.out.println("Postorder List: " + avl.postorderList()); |
| 348 | + |
| 349 | + // Search examples |
| 350 | + System.out.println("Search 27: " + avl.search(27)); // true |
| 351 | + System.out.println("Search 99: " + avl.search(99)); // false |
| 352 | + |
| 353 | + // Min and Max |
| 354 | + System.out.println("Min: " + avl.findMin()); |
| 355 | + System.out.println("Max: " + avl.findMax()); |
| 356 | + |
| 357 | + // Delete operations and show tree after each |
| 358 | + avl.delete(10); |
| 359 | + System.out.println("After deleting 10: " + avl.inorderList()); |
| 360 | + |
| 361 | + avl.delete(30); |
| 362 | + System.out.println("After deleting 30: " + avl.inorderList()); |
| 363 | + |
| 364 | + avl.delete(40); |
| 365 | + System.out.println("After deleting 40: " + avl.inorderList()); |
| 366 | + } |
| 367 | +} |
0 commit comments