|
| 1 | +package com.thealgorithms.tree; |
| 2 | + |
| 3 | +import java.util.ArrayList; |
| 4 | +import java.util.List; |
| 5 | +import java.util.NoSuchElementException; |
| 6 | + |
| 7 | +public class BST { |
| 8 | + |
| 9 | + /** |
| 10 | + * Node class represents a node in the BST. |
| 11 | + * 0->0->0 |
| 12 | + * 0=Nodes\ |
| 13 | + * each node contains divided into 3 section |
| 14 | + * Key-> Actual value, |
| 15 | + * left-> store the address of left tree, |
| 16 | + * Right-> store the address of right tree |
| 17 | + */ |
| 18 | + private static class Node { |
| 19 | + int key; |
| 20 | + Node left, right; |
| 21 | + |
| 22 | + Node(int key) { |
| 23 | + this.key = key; |
| 24 | + left = right = null; |
| 25 | + } |
| 26 | + } |
| 27 | + |
| 28 | + // Root of the BST |
| 29 | + // the first of Node tree |
| 30 | + //0-> |
| 31 | + private Node root; |
| 32 | + |
| 33 | + /** Create an empty BST. */ |
| 34 | + public BST() { |
| 35 | + root = null; |
| 36 | + } |
| 37 | + |
| 38 | + /* =========================== |
| 39 | + * INSERT |
| 40 | + * =========================== */ |
| 41 | + |
| 42 | + /** |
| 43 | + * Insert a value into the BST. Duplicate values are ignored (no-op). |
| 44 | + * |
| 45 | + * @param value value to insert |
| 46 | + */ |
| 47 | + public void insert(int value) { |
| 48 | + root = insertRecursive(root, value); |
| 49 | + } |
| 50 | + |
| 51 | + // Helper recursive method for insertion. |
| 52 | + private Node insertRecursive(Node node, int value) { |
| 53 | + // If we reached a null position, create and return a new node. |
| 54 | + if (node == null) { |
| 55 | + return new Node(value); |
| 56 | + } |
| 57 | + |
| 58 | + // If value is less, go left; if greater, go right; if equal, do nothing. |
| 59 | + if (value < node.key) { |
| 60 | + node.left = insertRecursive(node.left, value); |
| 61 | + } else if (value > node.key) { |
| 62 | + node.right = insertRecursive(node.right, value); |
| 63 | + } // else duplicate -> ignore |
| 64 | + |
| 65 | + return node; // return current (possibly updated) subtree root |
| 66 | + } |
| 67 | + |
| 68 | + /* =========================== |
| 69 | + * SEARCH |
| 70 | + * =========================== */ |
| 71 | + |
| 72 | + /** |
| 73 | + * Search the BST for a value. |
| 74 | + * |
| 75 | + * @param value value to search |
| 76 | + * @return true if value exists in the BST, false otherwise |
| 77 | + */ |
| 78 | + public boolean search(int value) { |
| 79 | + return searchRecursive(root, value); |
| 80 | + } |
| 81 | + |
| 82 | + private boolean searchRecursive(Node node, int value) { |
| 83 | + if (node == null) { |
| 84 | + return false; // reached leaf, not found |
| 85 | + } |
| 86 | + if (value == node.key) { |
| 87 | + return true; // found exact match |
| 88 | + } else if (value < node.key) { |
| 89 | + return searchRecursive(node.left, value); // search left subtree |
| 90 | + } else { |
| 91 | + return searchRecursive(node.right, value); // search right subtree |
| 92 | + } |
| 93 | + } |
| 94 | + |
| 95 | + /* =========================== |
| 96 | + * DELETE |
| 97 | + * =========================== */ |
| 98 | + |
| 99 | + /** |
| 100 | + * Delete a value from the BST. If the value is not present, tree remains unchanged. |
| 101 | + * |
| 102 | + * @param value value to delete |
| 103 | + */ |
| 104 | + public void delete(int value) { |
| 105 | + root = deleteRecursive(root, value); |
| 106 | + } |
| 107 | + |
| 108 | + // Helper for deletion, handles three cases: |
| 109 | + // 1) node is a leaf -> just remove |
| 110 | + // 2) node has one child -> replace node with child |
| 111 | + // 3) node has two children -> replace node with successor (smallest in right subtree) |
| 112 | + private Node deleteRecursive(Node node, int value) { |
| 113 | + if (node == null) { |
| 114 | + return null; // value not found |
| 115 | + } |
| 116 | + |
| 117 | + if (value < node.key) { |
| 118 | + // target is in left subtree |
| 119 | + node.left = deleteRecursive(node.left, value); |
| 120 | + } else if (value > node.key) { |
| 121 | + // target is in right subtree |
| 122 | + node.right = deleteRecursive(node.right, value); |
| 123 | + } else { |
| 124 | + // node.key == value -> delete this node |
| 125 | + // Case 1 & 2: node has 0 or 1 child |
| 126 | + if (node.left == null) { |
| 127 | + // return right child (could be null) to replace node |
| 128 | + return node.right; |
| 129 | + } else if (node.right == null) { |
| 130 | + // return left child to replace node |
| 131 | + return node.left; |
| 132 | + } |
| 133 | + |
| 134 | + // Case 3: node has two children |
| 135 | + // Find the inorder successor (smallest in the right subtree) |
| 136 | + Node successor = findMinNode(node.right); |
| 137 | + // Copy successor's value to this node |
| 138 | + node.key = successor.key; |
| 139 | + // Delete the successor node from right subtree |
| 140 | + node.right = deleteRecursive(node.right, successor.key); |
| 141 | + } |
| 142 | + |
| 143 | + return node; |
| 144 | + } |
| 145 | + |
| 146 | + /** |
| 147 | + * Find the minimum key in the BST. |
| 148 | + * |
| 149 | + * @return the smallest integer key in the tree |
| 150 | + * @throws NoSuchElementException if the tree is empty |
| 151 | + */ |
| 152 | + public int findMin() { |
| 153 | + if (root == null) { |
| 154 | + throw new NoSuchElementException("BST is empty"); |
| 155 | + } |
| 156 | + return findMinNode(root).key; |
| 157 | + } |
| 158 | + |
| 159 | + // Helper to find node with minimum key in a subtree (leftmost node) |
| 160 | + private Node findMinNode(Node node) { |
| 161 | + Node current = node; |
| 162 | + // go as far left as possible |
| 163 | + while (current.left != null) { |
| 164 | + current = current.left; |
| 165 | + } |
| 166 | + return current; |
| 167 | + } |
| 168 | + |
| 169 | + /** |
| 170 | + * Find the maximum key in the BST. |
| 171 | + * |
| 172 | + * the largest integer key in the tree |
| 173 | + * NoSuchElementException if the tree is empty |
| 174 | + */ |
| 175 | + public int findMax() { |
| 176 | + if (root == null) { |
| 177 | + throw new NoSuchElementException("BST is empty"); |
| 178 | + } |
| 179 | + Node current = root; |
| 180 | + // go as far right as possible |
| 181 | + while (current.right != null) { |
| 182 | + current = current.right; |
| 183 | + } |
| 184 | + return current.key; |
| 185 | + } |
| 186 | + |
| 187 | + |
| 188 | + /** |
| 189 | + * Print inorder traversal (Left, Node, Right). |
| 190 | + * InOrder -> Left, key, Right |
| 191 | + */ |
| 192 | + public void printInorder() { |
| 193 | + System.out.print("Inorder: "); |
| 194 | + printInorderRecursive(root); |
| 195 | + System.out.println(); |
| 196 | + } |
| 197 | + |
| 198 | + private void printInorderRecursive(Node node) { |
| 199 | + if (node == null) return; |
| 200 | + printInorderRecursive(node.left); // left |
| 201 | + System.out.print(node.key + " "); // node |
| 202 | + printInorderRecursive(node.right); // right |
| 203 | + } |
| 204 | + |
| 205 | + /** |
| 206 | + * Print preorder traversal (Node, Left, Right). |
| 207 | + * PreOrder -> key,Left, Right |
| 208 | + */ |
| 209 | + public void printPreorder() { |
| 210 | + System.out.print("Preorder: "); |
| 211 | + printPreorderRecursive(root); |
| 212 | + System.out.println(); |
| 213 | + } |
| 214 | + |
| 215 | + private void printPreorderRecursive(Node node) { |
| 216 | + if (node == null) return; |
| 217 | + System.out.print(node.key + " "); // node |
| 218 | + printPreorderRecursive(node.left); // left |
| 219 | + printPreorderRecursive(node.right); // right |
| 220 | + } |
| 221 | + |
| 222 | + /** |
| 223 | + * Print postorder traversal (Left, Right, Node). |
| 224 | + *PreOrder -> key,Left, Right |
| 225 | + */ |
| 226 | + public void printPostorder() { |
| 227 | + System.out.print("Postorder: "); |
| 228 | + printPostorderRecursive(root); |
| 229 | + System.out.println(); |
| 230 | + } |
| 231 | + |
| 232 | + private void printPostorderRecursive(Node node) { |
| 233 | + if (node == null) return; |
| 234 | + printPostorderRecursive(node.left); // left |
| 235 | + printPostorderRecursive(node.right); // right |
| 236 | + System.out.print(node.key + " "); // node |
| 237 | + } |
| 238 | + |
| 239 | + public List<Integer> inorderList() { |
| 240 | + List<Integer> result = new ArrayList<>(); |
| 241 | + inorderToList(root, result); |
| 242 | + return result; |
| 243 | + } |
| 244 | + |
| 245 | + private void inorderToList(Node node, List<Integer> out) { |
| 246 | + if (node == null) return; |
| 247 | + inorderToList(node.left, out); |
| 248 | + out.add(node.key); |
| 249 | + inorderToList(node.right, out); |
| 250 | + } |
| 251 | + |
| 252 | + |
| 253 | + public List<Integer> preorderList() { |
| 254 | + List<Integer> result = new ArrayList<>(); |
| 255 | + preorderToList(root, result); |
| 256 | + return result; |
| 257 | + } |
| 258 | + |
| 259 | + private void preorderToList(Node node, List<Integer> out) { |
| 260 | + if (node == null) return; |
| 261 | + out.add(node.key); |
| 262 | + preorderToList(node.left, out); |
| 263 | + preorderToList(node.right, out); |
| 264 | + } |
| 265 | + |
| 266 | + public List<Integer> postorderList() { |
| 267 | + List<Integer> result = new ArrayList<>(); |
| 268 | + postorderToList(root, result); |
| 269 | + return result; |
| 270 | + } |
| 271 | + |
| 272 | + private void postorderToList(Node node, List<Integer> out) { |
| 273 | + if (node == null) return; |
| 274 | + postorderToList(node.left, out); |
| 275 | + postorderToList(node.right, out); |
| 276 | + out.add(node.key); |
| 277 | + } |
| 278 | +} |
0 commit comments