Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
125 changes: 97 additions & 28 deletions source/linear-algebra/source/03-AT/03.ptx
Original file line number Diff line number Diff line change
Expand Up @@ -159,35 +159,77 @@ the set of all vectors that transform into <m>\vec 0</m>?
<activity estimated-time='10'>
<introduction>
<p>
Let <m>T: \IR^3 \rightarrow \IR^2</m> be the linear transformation given by the
standard matrix
<me>T\left( \left[\begin{array}{c} x \\ y \\ z \end{array}\right]\right) = \left[\begin{array}{c} 3x+4y-z \\ x+2y+z \end{array}\right]</me>
Let <m>T: \IR^3 \rightarrow \IR^2</m> be the linear transformation with the following standard matrix:
<me>A=\left[\begin{array}{ccc} 3 &amp; 4 &amp; -1 \\ 1 &amp; 2 &amp; 1 \end{array}\right]
=\left[\begin{array}{ccc} T(\vec e_1) &amp; T(\vec e_2) &amp; T(\vec e_3)\end{array}\right].</me>
</p>
</introduction>
<task>
<task>
<statement>
<p>
Which of the following vectors is an element of <m>\ker T</m>?
</p>
<ol marker="A.">
<li>
<p>
<m>\left[\begin{array}{c}1\\1\\1\end{array}\right]</m>
</p>
</li>
<li>
<p>
<m>\left[\begin{array}{c}3\\-2\\1\end{array}\right]</m>
</p>
</li>
<li>
<p>
<m>\left[\begin{array}{c}4\\-3\\1\\1\end{array}\right]</m>
</p>
</li>
</ol>
</statement>
</task>
<task>
<statement>
<p>
In general, <m>\ker T</m> is the set of solutions to the equation:
<me>
T\left(\vec{x}\right)=T\left(\left[\begin{array}{c}x_1\\x_2\\x_3\end{array}\right]\right)=\left[\begin{array}{c}0\\0\end{array}\right].
</me>
Write down an equivalent <em>vector equation</em>, solve it, and describe <m>\ker T</m>.
</p>
</statement>
</task>
</activity>
<sage language="octave">
</sage>

<observation xml:id="observation-kernel-homogeneous-solution">
<statement>
<p>
Set
<m>
T\left(\left[\begin{array}{c}x\\y\\z\end{array}\right]\right)
=
\left[\begin{array}{c}0\\0\end{array}\right]
</m> to find a linear system of equations whose solution set is the kernel.
The kernel of a transformation <m>T</m>
is exactly the solution space of
the homogeneous equation <m>T(\vec{x})=\vec{0}</m>.
If its standard matrix is <m>A</m>, then we may write
<m>A\vec x=\vec 0</m> and use <m>\RREF[A\,|\,\vec 0]</m> to
find this kernel.
</p>
</task>
<task>
<p>
Use <m>\RREF(A)</m> to solve this homogeneous system of equations and find a basis
for the kernel of <m>T</m>.
In particular, the kernel is a subspace of the transformation's
domain, and has a basis which may be found as in
<xref ref="fact-solution-space-basis"/>:
<me>
\ker T=\left\{\left[\begin{array}{c}3a\\-2a\\a\end{array}\right]\middle|
a\in\IR\right\} \hspace{2em}
\text{Basis for }\ker T=\left\{\left[\begin{array}{c}3\\-2\\1\end{array}\right]\right\}.
</me>
</p>
</task>
</activity>
<sage language="octave">
</sage>
</statement>
</observation>

<activity estimated-time='10'>
<statement>
<p>
Let <m>T: \IR^4 \rightarrow \IR^3</m> be the linear transformation given by
Let <m>T: \IR^4 \rightarrow \IR^3</m> be the linear transformation whose standard matrix is:
<me> T\left(\left[\begin{array}{c} x \\ y \\ z \\ w \end{array}\right] \right) =
\left[\begin{array}{c} 2x+4y+2z-4w \\ -2x-4y+z+w \\ 3x+6y-z-4w\end{array}\right].</me>
</p>
Expand Down Expand Up @@ -372,23 +414,50 @@ the set of all vectors that are the result of using <m>T</m> to transform
<task>
<statement>
<p>
Determine if <m>\left[\begin{array}{c} 12 \\ 3 \\ 3 \end{array}\right]</m> belongs to
<m>\Im T</m>.
Which of the following statements is most helpful in deciding if <m>\left[\begin{array}{c} 12 \\ 3 \\ 3 \end{array}\right]</m> is an element of <m>\Im T</m>?
</p>
<ol marker="A.">
<li>
<p>
The equation <m>T\left(\left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array}\right]\right)=\left[\begin{array}{c} 12 \\ 3 \\ 3 \end{array}\right]</m> has infinitely many solutions.
</p>
</li>
<li>
<p>
The equation <m>T\left(\left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array}\right]\right)=\left[\begin{array}{c} 12 \\ 3 \\ 3 \end{array}\right]</m> has at least one solution.
</p>
</li>
<li>
<p>
The equation <m>T\left(\left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array}\right]\right)=\left[\begin{array}{c} 12 \\ 3 \\ 3 \end{array}\right]</m> has no solutions.
</p>
</li>
<li>
<p>
The equation <m>T\left(\left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array}\right]\right)=\left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right]</m> has at least one solution.
</p>
</li>
</ol>
</statement>
</task>
<task>
<statement>
<p>
Determine if <m>\left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right]</m> belongs to
<m>\Im T</m>.
</p>
</statement>
<statement>
<p>
Translate your choice into a statement about a specific vector equation and use it to determine whether or not the vector <m>\left[\begin{array}{c} 12 \\ 3 \\ 3 \end{array}\right]</m> is an element of <m>\Im T</m>.
</p>
</statement>
</task>
<task>
<statement>
<p>
Determine whether or not the vector <m>\left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right]</m> is an element of <m>\Im T</m> by analyzing an appropriate vector equation.
</p>
</statement>
</task>
<task>
<statement>
<p>
An arbitrary vector <m>\left[\begin{array}{c}\unknown\\\unknown\\\unknown\end{array}\right]</m> belongs to
In general, an arbitrary vector <m>\left[\begin{array}{c}\unknown\\\unknown\\\unknown\end{array}\right]</m> belongs to
<m>\Im T</m> provided the equation
<me>x_1 T(\vec{e}_1)+x_2 T(\vec{e}_2)+x_3T(\vec{e}_3)+x_4T(\vec{e}_4)=\vec{w}</me> has...
<ol marker="A.">
Expand Down