-
Notifications
You must be signed in to change notification settings - Fork 0
API Reference
automation edited this page Aug 8, 2025
·
1 revision
-
StatClean(df: DataFrame, preserve_index: bool = True)-
set_data,set_thresholds,get_thresholds,reset,get_summary_report
-
-
detect_outliers_iqr(column, lower_factor=None, upper_factor=None)→ Series -
detect_outliers_zscore(column, threshold=None)→ Series -
detect_outliers_modified_zscore(column, threshold=None)→ Series -
detect_outliers_mahalanobis(columns=None, chi2_threshold=None, use_shrinkage=False)→ Series
-
remove_outliers_iqr(column, ...)→ self -
remove_outliers_zscore(column, threshold=None)→ self -
remove_outliers_modified_zscore(column, threshold=None)→ self -
remove_outliers_mahalanobis(columns=None, chi2_threshold=None, use_shrinkage=False)→ self -
winsorize_outliers_iqr(column, ...)→ self -
winsorize_outliers_zscore(column, threshold=None)→ self -
winsorize_outliers_percentile(column, lower_percentile=5, upper_percentile=95)→ self
-
analyze_distribution(column)→ dict (skewness, kurtosis, normality, recommendation) -
compare_methods(columns=None, methods=None, ...)→ dict summary -
get_outlier_stats(columns=None, methods=['iqr','zscore'], ...)→ DataFrame -
plot_outlier_analysis(columns=None, methods=None, figsize=(15,5))→ dict[str, Figure] -
visualize_outliers(column)→ None
-
transform_boxcox(column, lambda_param=None)→ (self, info) -
transform_log(column, base='natural')→ (self, info) -
transform_sqrt(column)→ (self, info) -
recommend_transformation(column)→ dict
plot_outliers(series, outliers_mask, title=None)plot_distribution(series, outliers_mask=None, title=None)plot_boxplot(series, title=None)plot_qq(series, outliers_mask=None, title=None)plot_outlier_analysis(data, outliers=None)
Notes:
- Remover methods return
selffor chaining; access data viacleaner.clean_df. - Mahalanobis supports percentile thresholds and shrinkage covariance.