Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 60 additions & 0 deletions app/docs/Language/pte-intro.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
---
title: "PTE-Academic题型与题量介绍"
description: "PTE-Academic题型与题量介绍"
date: "2025-09-19"
tags:
- pte
---

很多同学可能因为信息差,所以并不太了解PTE考试。实际上对于想要拿到语言成绩或者希望移民的同学来说,考pte比考雅思托福要容易上分。因为PTE有无数考生贡献和机经和高频题,所以如果运气好几乎是开卷考试。但是PTE和雅思托福不同,PTE-Academic题型种类非常多,而且技巧性非常强。能在雅思拿到高分的同学如果不重视刷题和做题技巧,pte可能也无法拿到满意成绩。今天就简单的先介绍一下各大题型和交叉评分,后续会逐步更新PTE技巧,大家有想听的内容也可以评论区留言。

PTE题型和题量介绍如下:
太长不看版:PTE优先级最高的题型是:WFD, RS, RA, DI,SGD, SWT, WE,FIB-D,FIB-DD (如果时间有限,这些题目重点准备,也可以拿到不错的分数哦)

## 口语 Speaking (36–44 分钟,所有题目合并计时)

| 模块 | 题型顺序 | 优先级 | 考试题目 | 交叉评分模块 | 题目数量 | 答题时间 |
| ------------ | -------- | ------ | ---------------------------------------------- | --------------------------- | -------- | ------------- |
| 口语Speaking | 1 | 中 | 大声朗读文段:Read Aloud (RA) | 口语Speaking | 6–7 | 合并计时36-44 |
| 口语Speaking | 2 | 高 | 重复句子:Repeat Sentence (RS) | 口语Speaking・听力Listening | 10–12 | |
| 口语Speaking | 3 | 高 | 描述图片:Describe Image (DI) | 口语Speaking | 5–6 | |
| 口语Speaking | 4 | 中 | 重述讲座:Re-tell Lecture (RL) | 口语Speaking・听力Listening | 2–3 | |
| 口语Speaking | 5 | 中 | 回答短问题:Answer Short Question (ASQ) | 听力Listening | 5–6 | |
| 口语Speaking | 6 | 高 | 总结小组讨论:Summarize Group Discussion (SGD) | 口语Speaking・听力Listening | 2–3 | |
| 口语Speaking | 7 | 中 | 情景回答:Response to a Situation (RTS) | 口语Speaking | 2–3 | |

---

## 写作 Writing (独立计时)

| 模块 | 题型顺序 | 优先级 | 考试题目 | 交叉评分模块 | 题目数量 | 答题时间 |
| ----------- | -------- | ------ | -------------------------------------- | ------------------------ | -------- | --------------------- |
| 写作Writing | 8 | 高 | 文章总结:Summarize Written Text (SWT) | 写作Writing・阅读Reading | 2 | 独立计时 每题 10 分钟 |
| 写作Writing | 9 | 高 | 命题作文:Write Essay (WE) | 写作Writing | 1 | 独立计时 20 分钟 |

---

## 阅读 Reading (29–30 分钟,所有题目合并计时)

| 模块 | 题型顺序 | 优先级 | 考试题目 | 交叉评分模块 | 题目数量 | 答题时间 |
| ----------- | -------- | ------ | ---------------------------------------------------- | ------------ | -------- | ------------------ |
| 阅读Reading | 10 | 高 | 下拉选择填空:Dropdown Fill in the Blanks (FIB D) | 阅读Reading | 5–6 | 合并计时 29-30分钟 |
| 阅读Reading | 11 | 低 | 多项选择:Multiple Choice – Multiple Answers (MCQ-M) | 阅读Reading | 2–3 | |
| 阅读Reading | 12 | 中 | 段落排序:Reorder Paragraph (RO) | 阅读Reading | 2–3 | |
| 阅读Reading | 13 | 高 | 拖拽填空:Drag and Drop Fill in the Blanks (FIB DD) | 阅读Reading | 4–5 | |
| 阅读Reading | 14 | 低 | 单项选择:Multiple Choice – Single Answer (MCQ-S) | 阅读Reading | 2–3 | |

---

## 听力 Listening (20–33 分钟,所有题目合并计时,时间非常紧张,需要留时间给大比分题型,前面的小分值题型速过)

| 模块 | 题型顺序 | 优先级 | 考试题目 | 交叉评分模块 | 题目数量 | 答题时间 |
| ------------- | -------- | ------ | --------------------------------------------- | -------------------------- | -------- | --------------------- |
| 听力Listening | 15 | 高 | 讲座总结:Summarize Spoken Text (SST) | 听力Listening・写作Writing | 1 | 独立计时 每题 10 分钟 |
| 听力Listening | 16 | 低 | 多项选择:Listening MCQ-M | 听力Listening | 2–3 | 合并计时 20-33分钟 |
| 听力Listening | 17 | 中 | 听力填空:Fill in the Blanks (FIB-L) | 听力Listening | 2–3 | |
| 听力Listening | 18 | 低 | 正确概要选择:Highlight Correct Summary (HCS) | 听力Listening・阅读Reading | 2–3 | |
| 听力Listening | 19 | 低 | 单项选择:Listening MCQ-S | 听力Listening | 1–2 | |
| 听力Listening | 20 | 低 | 补全对话:Select Missing Words (SMW) | 听力Listening | 2–3 | |
| 听力Listening | 21 | 中 | 选错词:Highlight Incorrect Words (HIW) | 听力Listening・阅读Reading | 2–3 | |
| 听力Listening | 22 | 超高 | 听写句子:Write from Dictation (WFD) | 听力Listening・写作Writing | 3–4 | |
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
---
title: "Code translation入门推荐必读"
description: ""
date: "2025-09-19"
tags:
- tag-one
---

入门文章推荐:

1. ExeCoder: Empowering Large Language Models with Executability Representation for Code Translation 微软的工作,提出了一些比较有创意的想法。
2. Repository-Level Compositional Code Translation and Validation 文件级别的(代码长度越长,难度越大)
3. CoTran: An LLM-based Code Translator using Reinforcement Learning with Feedback from Compiler and Symbolic Execution 常见的使用compiler和RL的方法,结构设计的很棒。
4. Lost in Translation: A Study of Bugs Introduced by Large Language Models while Translating Code 一个类似survey的文章。让你快速入门。
5. A Systematic Literature Review on Neural Code Translation 完全体文献综述,读完了感觉什么的都会了。
6. IMPROVING COMPLEX REASONING WITH DYNAMIC PROMPT CORRUPTION: A SOFT PROMPT OPTIMIZATION APPROACH 一篇关于propmt engineering的文章,读完了也许对你写prompt有作用。
7. Enhancing LLM-based Code Translation in Repository Context via Triple Knowledge-Augmented 知识增强和Code translation的结合,是一个很有趣的角度,并且也是文件级别的处理。

大家如果找到什么很好的文章也欢迎和大家一起分享。