Self Supervised Tools for Single Cell Data
Molecular Cross-Validation for PCs arXiv manuscript
mcv(
count_data,
n=1,
n_pcs=100,
random_seed=800,
p=0.5,
metric='mse',
standardization_method='log',
metric_kwargs={},
silent=False,
verbose=None,
zero_center=False
)
Noise2Self for kNN selection arXiv manuscript
noise2self(
count_data,
neighbors=None,
npcs=None,
metric='euclidean',
loss='mse',
loss_kwargs={},
return_errors=False,
connectivity=False,
standardization_method='log',
pc_data=None,
chunk_size=10000,
verbose=None
)
Implemented as in DEWÄKSS
Feature module and submodule determination using pearson correlation distance, kNN embedding, and leiden clustering
get_correlation_modules(
adata,
layer='X',
n_neighbors=10,
leiden_kwargs={},
output_key='gene_module',
obs_mask=None
)
get_correlation_submodules(
adata,
layer='X',
n_neighbors=10,
leiden_kwargs={},
input_key='gene_module',
output_key='gene_submodule',
obs_mask=None
)
Feature module and submodule scoring
score_all_modules(
adata,
modules=None,
module_column='gene_module',
output_key_suffix='_score',
obs_mask=None,
layer='X',
scaler=TruncMinMaxScaler(),
fit_scaler=True,
clipping=None
)
score_all_submodules(
adata,
modules=None,
submodules=None,
module_column='gene_module',
submodule_column='gene_submodule',
output_key_suffix='_score',
obs_mask=None,
layer='X',
scaler=TruncMinMaxScaler(),
fit_scaler=True,
clipping=None
)