Skip to content
Merged
6 changes: 3 additions & 3 deletions examples/gallery/histograms/histogram.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,12 +12,12 @@
import numpy as np
import pygmt

np.random.seed(100)

# Generate random elevation data from a normal distribution
rng = np.random.default_rng(seed=100)
mean = 100 # mean of distribution
stddev = 25 # standard deviation of distribution
data = mean + stddev * np.random.randn(521)
data = rng.normal(loc=mean, scale=stddev, size=521)


fig = pygmt.Figure()

Expand Down
9 changes: 5 additions & 4 deletions examples/gallery/histograms/scatter_and_histograms.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,15 +13,16 @@
import numpy as np
import pygmt

np.random.seed(19680801)

# Generate random data from a standard normal distribution centered on 0
x = np.random.randn(1000)
y = np.random.randn(1000)
# with a standard deviation of 1
rng = np.random.default_rng(seed=19680801)
x = rng.normal(loc=0, scale=1, size=1000)
y = rng.normal(loc=0, scale=1, size=1000)

# Get axis limits
xymax = max(np.max(np.abs(x)), np.max(np.abs(y)))


fig = pygmt.Figure()
fig.basemap(
region=[-xymax - 0.5, xymax + 0.5, -xymax - 0.5, xymax + 0.5],
Expand Down
7 changes: 4 additions & 3 deletions examples/gallery/symbols/points.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,10 +11,11 @@
import pygmt

# Generate a random set of points to plot
np.random.seed(42)
rng = np.random.default_rng(seed=42)
region = [150, 240, -10, 60]
x = np.random.uniform(region[0], region[1], 100)
y = np.random.uniform(region[2], region[3], 100)
x = rng.uniform(low=region[0], high=region[1], size=100)
y = rng.uniform(low=region[2], high=region[3], size=100)


fig = pygmt.Figure()
# Create a 15 cm x 15 cm basemap with a Cartesian projection (X) using the
Expand Down
14 changes: 9 additions & 5 deletions examples/gallery/symbols/scatter.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,18 +13,22 @@
import numpy as np
import pygmt

np.random.seed(19680801)
rng = np.random.default_rng(seed=19680801)
n = 200 # number of random data points

fig = pygmt.Figure()
fig.basemap(
region=[-0.1, 1.1, -0.1, 1.1],
region=[-1, 1, -1, 1],
projection="X10c/10c",
frame=["xa0.2fg", "ya0.2fg", "WSrt"],
frame=["xa0.5fg", "ya0.5fg", "WSrt"],
)
for fill in ["gray73", "darkorange", "slateblue"]:
x, y = np.random.rand(2, n) # random X and Y data in [0,1]
size = np.random.rand(n) * 0.5 # random size [0,0.5], in cm
# Generate standard normal distributions centered on 0
# with standard deviations of 1
x = rng.normal(loc=0, scale=0.5, size=n) # random x data
y = rng.normal(loc=0, scale=0.5, size=n) # random y data
size = rng.normal(loc=0, scale=0.5, size=n) * 0.5 # random size, in cm

# plot data points as circles (style="c"), with different sizes
fig.plot(
x=x,
Expand Down
6 changes: 3 additions & 3 deletions examples/tutorials/advanced/cartesian_histograms.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,16 +22,16 @@
# %%
# Generate random data from a normal distribution:

np.random.seed(100)
rng = np.random.default_rng(seed=100)

# Mean of distribution
mean = 100
# Standard deviation of distribution
stddev = 20

# Create two data sets
data01 = np.random.normal(mean, stddev, 42)
data02 = np.random.normal(mean, stddev * 2, 42)
data01 = rng.normal(loc=mean, scale=stddev, size=42)
data02 = rng.normal(loc=mean, scale=stddev * 2, size=42)


# %%
Expand Down