Skip to content

Commit f526fea

Browse files
committed
update
1 parent b520df4 commit f526fea

File tree

8 files changed

+344
-333
lines changed

8 files changed

+344
-333
lines changed

doc/pub/week4/html/week4-bs.html

Lines changed: 15 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -327,9 +327,11 @@ <h2 id="plans-for-the-week-of-february-10-14" class="anchor">Plans for the week
327327
<!-- !split -->
328328
<h2 id="readings" class="anchor">Readings </h2>
329329

330-
<ol>
331-
<li> For the discussion of one-qubit, two-qubit and other gates, sections 2.6-2.11 and 3.1-3.4 of Hundt's book <b>Quantum Computing for Programmers</b>, contain most of the relevant information.</li>
332-
</ol>
330+
<p>For the discussion of one-qubit, two-qubit and other gates, sections
331+
2.6-2.11 and 3.1-3.4 of Hundt's book <b>Quantum Computing for Programmers</b>,
332+
contain most of the relevant information.
333+
</p>
334+
333335
<!-- !split -->
334336
<h2 id="gates-the-whys-and-hows" class="anchor">Gates, the whys and hows </h2>
335337

@@ -356,19 +358,19 @@ <h2 id="gates-the-whys-and-hows" class="anchor">Gates, the whys and hows </h2>
356358
<h2 id="structure-of-the-lecture" class="anchor">Structure of the lecture </h2>
357359

358360
<ol>
359-
<li> First we review some of the basic ways of representing the solution to the Schr\"odinger equation, introducing the so-called Interaction, Heisenberg and Schr\"odinger prictures and unitary transformations.</li>
361+
<li> First we review some of the basic ways of representing the solution to the Schr&#246;dinger equation, introducing the so-called Interaction, Heisenberg and Schr&#246;dinger prictures and unitary transformations.</li>
360362
<li> Secondly, we present examples of physical processes and how they can be represented as unitary operations on a given state.</li>
361363
<li> These unitary transformations are then represented as gates. Setting gates together gives us a final circuit which can represent a specific physical system</li>
362364
</ol>
363365
<!-- !split -->
364366
<h2 id="part-1-mathematical-background" class="anchor">Part 1: Mathematical background </h2>
365367

366-
<p>The time-dependent Schr\"odinger equation (or equation of motion) reads</p>
368+
<p>The time-dependent Schr&#246;dinger equation (or equation of motion) reads</p>
367369
$$
368370
\imath \hbar\frac{\partial }{\partial t}|\Psi_S(t)\rangle = \hat{H}\Psi_S(t)\rangle,
369371
$$
370372

371-
<p>where the subscript \( S \) stands for Schr\"odinger here.
373+
<p>where the subscript \( S \) stands for Schr&#246;dinger here.
372374
A formal solution is given by
373375
</p>
374376
$$
@@ -407,7 +409,7 @@ <h2 id="interaction-picture" class="anchor">Interaction picture </h2>
407409
$$
408410

409411
<p>which is again a unitary transformation carried out now at the time \( t \) on the
410-
wave function in the Schr\"odinger picture.
412+
wave function in the Schr&#246;dinger picture.
411413
</p>
412414

413415
<!-- !split -->
@@ -422,7 +424,7 @@ <h2 id="taking-the-derivative-wrt-time" class="anchor">Taking the derivative wrt
422424
<!-- !split -->
423425
<h2 id="expression-using-the-interaction-picture" class="anchor">Expression using the interaction picture </h2>
424426

425-
<p>Using the definition of the Schr\"odinger equation, we can rewrite the last equation as </p>
427+
<p>Using the definition of the Schr&#246;dinger equation, we can rewrite the last equation as </p>
426428
$$
427429
\imath \hbar\frac{\partial }{\partial t}|\Psi_I(t)\rangle = \exp{(\imath\hat{H}_0t/\hbar)}\left[-\hat{H}_0+\hat{H}_0+\hat{H}_I\right]\exp{(-\imath\hat{H}_0t/\hbar)}\Psi_I(t)\rangle,
428430
$$
@@ -474,7 +476,7 @@ <h2 id="interaction-picture-and-equation-of-motion" class="anchor">Interaction p
474476
\imath \hbar\frac{\partial }{\partial t}\hat{O}_I(t) = \exp{(\imath\hat{H}_0t/\hbar)}\left[\hat{O}_S\hat{H}_0-\hat{H}_0\hat{O}_S\right]\exp{(-\imath\hat{H}_0t/\hbar)}=\left[\hat{O}_I(t),\hat{H}_0\right].
475477
$$
476478

477-
<p>Here we have used the time-independence of the Schr\"odinger equation
479+
<p>Here we have used the time-independence of the Schr&#246;dinger equation
478480
together with the observation that any function of an operator commutes with the operator itself.
479481
</p>
480482

@@ -527,7 +529,7 @@ <h2 id="time-development-operator" class="anchor">Time-development operator </h
527529
<!-- !split -->
528530
<h2 id="properties-of-the-operator-u" class="anchor">Properties of the operator \( U \) </h2>
529531

530-
<p>Using our definition of Schr\"odinger's equation in the interaction picture, we can then construct the operator \( \hat{U} \). We have defined</p>
532+
<p>Using our definition of Schr&#246;dinger's equation in the interaction picture, we can then construct the operator \( \hat{U} \). We have defined</p>
531533
$$
532534
|\Psi_I(t)\rangle = \exp{(\imath\hat{H}_0t/\hbar)}|\Psi_S(t)\rangle,
533535
$$
@@ -650,8 +652,8 @@ <h2 id="heisenberg-picture-as-alternative" class="anchor">Heisenberg picture as
650652
$$
651653

652654
<p>which is again a unitary transformation carried out now at the time \( t \) on the
653-
wave function in the Schr\"odinger picture. If we combine this equation with
654-
Schr\"odinger's equation we obtain the following equation of motion
655+
wave function in the Schr&#246;dinger picture. If we combine this equation with
656+
Schr&#246;dinger's equation we obtain the following equation of motion
655657
</p>
656658
$$
657659
\imath \hbar\frac{\partial }{\partial t}|\Psi_H(t)\rangle = 0,
@@ -748,7 +750,7 @@ <h2 id="time-evolution" class="anchor">Time evolution </h2>
748750
<!-- !split -->
749751
<h2 id="initial-state-preparation" class="anchor">Initial state preparation </h2>
750752

751-
<p>In the limit \( t_0\rightarrow -\infty \), the solution ot Schr\"odinger's equation is
753+
<p>In the limit \( t_0\rightarrow -\infty \), the solution ot Schr&#246;dinger's equation is
752754
\( |\Phi_0\rangle \), and the eigenenergies are given by
753755
</p>
754756
$$

doc/pub/week4/html/week4-reveal.html

Lines changed: 14 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -209,9 +209,10 @@ <h2 id="plans-for-the-week-of-february-10-14">Plans for the week of February 10-
209209
<section>
210210
<h2 id="readings">Readings </h2>
211211

212-
<ol>
213-
<p><li> For the discussion of one-qubit, two-qubit and other gates, sections 2.6-2.11 and 3.1-3.4 of Hundt's book <b>Quantum Computing for Programmers</b>, contain most of the relevant information.</li>
214-
</ol>
212+
<p>For the discussion of one-qubit, two-qubit and other gates, sections
213+
2.6-2.11 and 3.1-3.4 of Hundt's book <b>Quantum Computing for Programmers</b>,
214+
contain most of the relevant information.
215+
</p>
215216
</section>
216217

217218
<section>
@@ -241,7 +242,7 @@ <h2 id="gates-the-whys-and-hows">Gates, the whys and hows </h2>
241242
<h2 id="structure-of-the-lecture">Structure of the lecture </h2>
242243

243244
<ol>
244-
<p><li> First we review some of the basic ways of representing the solution to the Schr\"odinger equation, introducing the so-called Interaction, Heisenberg and Schr\"odinger prictures and unitary transformations.</li>
245+
<p><li> First we review some of the basic ways of representing the solution to the Schr&#246;dinger equation, introducing the so-called Interaction, Heisenberg and Schr&#246;dinger prictures and unitary transformations.</li>
245246
<p><li> Secondly, we present examples of physical processes and how they can be represented as unitary operations on a given state.</li>
246247
<p><li> These unitary transformations are then represented as gates. Setting gates together gives us a final circuit which can represent a specific physical system</li>
247248
</ol>
@@ -250,14 +251,14 @@ <h2 id="structure-of-the-lecture">Structure of the lecture </h2>
250251
<section>
251252
<h2 id="part-1-mathematical-background">Part 1: Mathematical background </h2>
252253

253-
<p>The time-dependent Schr\"odinger equation (or equation of motion) reads</p>
254+
<p>The time-dependent Schr&#246;dinger equation (or equation of motion) reads</p>
254255
<p>&nbsp;<br>
255256
$$
256257
\imath \hbar\frac{\partial }{\partial t}|\Psi_S(t)\rangle = \hat{H}\Psi_S(t)\rangle,
257258
$$
258259
<p>&nbsp;<br>
259260

260-
<p>where the subscript \( S \) stands for Schr\"odinger here.
261+
<p>where the subscript \( S \) stands for Schr&#246;dinger here.
261262
A formal solution is given by
262263
</p>
263264
<p>&nbsp;<br>
@@ -304,7 +305,7 @@ <h2 id="interaction-picture">Interaction picture </h2>
304305
<p>&nbsp;<br>
305306

306307
<p>which is again a unitary transformation carried out now at the time \( t \) on the
307-
wave function in the Schr\"odinger picture.
308+
wave function in the Schr&#246;dinger picture.
308309
</p>
309310
</section>
310311

@@ -323,7 +324,7 @@ <h2 id="taking-the-derivative-wrt-time">Taking the derivative wrt time </h2>
323324
<section>
324325
<h2 id="expression-using-the-interaction-picture">Expression using the interaction picture </h2>
325326

326-
<p>Using the definition of the Schr\"odinger equation, we can rewrite the last equation as </p>
327+
<p>Using the definition of the Schr&#246;dinger equation, we can rewrite the last equation as </p>
327328
<p>&nbsp;<br>
328329
$$
329330
\imath \hbar\frac{\partial }{\partial t}|\Psi_I(t)\rangle = \exp{(\imath\hat{H}_0t/\hbar)}\left[-\hat{H}_0+\hat{H}_0+\hat{H}_I\right]\exp{(-\imath\hat{H}_0t/\hbar)}\Psi_I(t)\rangle,
@@ -390,7 +391,7 @@ <h2 id="interaction-picture-and-equation-of-motion">Interaction picture and equa
390391
$$
391392
<p>&nbsp;<br>
392393

393-
<p>Here we have used the time-independence of the Schr\"odinger equation
394+
<p>Here we have used the time-independence of the Schr&#246;dinger equation
394395
together with the observation that any function of an operator commutes with the operator itself.
395396
</p>
396397
</section>
@@ -457,7 +458,7 @@ <h2 id="time-development-operator">Time-development operator </h2>
457458
<section>
458459
<h2 id="properties-of-the-operator-u">Properties of the operator \( U \) </h2>
459460

460-
<p>Using our definition of Schr\"odinger's equation in the interaction picture, we can then construct the operator \( \hat{U} \). We have defined</p>
461+
<p>Using our definition of Schr&#246;dinger's equation in the interaction picture, we can then construct the operator \( \hat{U} \). We have defined</p>
461462
<p>&nbsp;<br>
462463
$$
463464
|\Psi_I(t)\rangle = \exp{(\imath\hat{H}_0t/\hbar)}|\Psi_S(t)\rangle,
@@ -617,8 +618,8 @@ <h2 id="heisenberg-picture-as-alternative">Heisenberg picture as alternative </
617618
<p>&nbsp;<br>
618619

619620
<p>which is again a unitary transformation carried out now at the time \( t \) on the
620-
wave function in the Schr\"odinger picture. If we combine this equation with
621-
Schr\"odinger's equation we obtain the following equation of motion
621+
wave function in the Schr&#246;dinger picture. If we combine this equation with
622+
Schr&#246;dinger's equation we obtain the following equation of motion
622623
</p>
623624
<p>&nbsp;<br>
624625
$$
@@ -740,7 +741,7 @@ <h2 id="time-evolution">Time evolution </h2>
740741
<section>
741742
<h2 id="initial-state-preparation">Initial state preparation </h2>
742743

743-
<p>In the limit \( t_0\rightarrow -\infty \), the solution ot Schr\"odinger's equation is
744+
<p>In the limit \( t_0\rightarrow -\infty \), the solution ot Schr&#246;dinger's equation is
744745
\( |\Phi_0\rangle \), and the eigenenergies are given by
745746
</p>
746747
<p>&nbsp;<br>

doc/pub/week4/html/week4-solarized.html

Lines changed: 15 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -232,9 +232,11 @@ <h2 id="plans-for-the-week-of-february-10-14">Plans for the week of February 10-
232232
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
233233
<h2 id="readings">Readings </h2>
234234

235-
<ol>
236-
<li> For the discussion of one-qubit, two-qubit and other gates, sections 2.6-2.11 and 3.1-3.4 of Hundt's book <b>Quantum Computing for Programmers</b>, contain most of the relevant information.</li>
237-
</ol>
235+
<p>For the discussion of one-qubit, two-qubit and other gates, sections
236+
2.6-2.11 and 3.1-3.4 of Hundt's book <b>Quantum Computing for Programmers</b>,
237+
contain most of the relevant information.
238+
</p>
239+
238240
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
239241
<h2 id="gates-the-whys-and-hows">Gates, the whys and hows </h2>
240242

@@ -261,19 +263,19 @@ <h2 id="gates-the-whys-and-hows">Gates, the whys and hows </h2>
261263
<h2 id="structure-of-the-lecture">Structure of the lecture </h2>
262264

263265
<ol>
264-
<li> First we review some of the basic ways of representing the solution to the Schr\"odinger equation, introducing the so-called Interaction, Heisenberg and Schr\"odinger prictures and unitary transformations.</li>
266+
<li> First we review some of the basic ways of representing the solution to the Schr&#246;dinger equation, introducing the so-called Interaction, Heisenberg and Schr&#246;dinger prictures and unitary transformations.</li>
265267
<li> Secondly, we present examples of physical processes and how they can be represented as unitary operations on a given state.</li>
266268
<li> These unitary transformations are then represented as gates. Setting gates together gives us a final circuit which can represent a specific physical system</li>
267269
</ol>
268270
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
269271
<h2 id="part-1-mathematical-background">Part 1: Mathematical background </h2>
270272

271-
<p>The time-dependent Schr\"odinger equation (or equation of motion) reads</p>
273+
<p>The time-dependent Schr&#246;dinger equation (or equation of motion) reads</p>
272274
$$
273275
\imath \hbar\frac{\partial }{\partial t}|\Psi_S(t)\rangle = \hat{H}\Psi_S(t)\rangle,
274276
$$
275277

276-
<p>where the subscript \( S \) stands for Schr\"odinger here.
278+
<p>where the subscript \( S \) stands for Schr&#246;dinger here.
277279
A formal solution is given by
278280
</p>
279281
$$
@@ -312,7 +314,7 @@ <h2 id="interaction-picture">Interaction picture </h2>
312314
$$
313315

314316
<p>which is again a unitary transformation carried out now at the time \( t \) on the
315-
wave function in the Schr\"odinger picture.
317+
wave function in the Schr&#246;dinger picture.
316318
</p>
317319

318320
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
@@ -327,7 +329,7 @@ <h2 id="taking-the-derivative-wrt-time">Taking the derivative wrt time </h2>
327329
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
328330
<h2 id="expression-using-the-interaction-picture">Expression using the interaction picture </h2>
329331

330-
<p>Using the definition of the Schr\"odinger equation, we can rewrite the last equation as </p>
332+
<p>Using the definition of the Schr&#246;dinger equation, we can rewrite the last equation as </p>
331333
$$
332334
\imath \hbar\frac{\partial }{\partial t}|\Psi_I(t)\rangle = \exp{(\imath\hat{H}_0t/\hbar)}\left[-\hat{H}_0+\hat{H}_0+\hat{H}_I\right]\exp{(-\imath\hat{H}_0t/\hbar)}\Psi_I(t)\rangle,
333335
$$
@@ -379,7 +381,7 @@ <h2 id="interaction-picture-and-equation-of-motion">Interaction picture and equa
379381
\imath \hbar\frac{\partial }{\partial t}\hat{O}_I(t) = \exp{(\imath\hat{H}_0t/\hbar)}\left[\hat{O}_S\hat{H}_0-\hat{H}_0\hat{O}_S\right]\exp{(-\imath\hat{H}_0t/\hbar)}=\left[\hat{O}_I(t),\hat{H}_0\right].
380382
$$
381383

382-
<p>Here we have used the time-independence of the Schr\"odinger equation
384+
<p>Here we have used the time-independence of the Schr&#246;dinger equation
383385
together with the observation that any function of an operator commutes with the operator itself.
384386
</p>
385387

@@ -432,7 +434,7 @@ <h2 id="time-development-operator">Time-development operator </h2>
432434
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
433435
<h2 id="properties-of-the-operator-u">Properties of the operator \( U \) </h2>
434436

435-
<p>Using our definition of Schr\"odinger's equation in the interaction picture, we can then construct the operator \( \hat{U} \). We have defined</p>
437+
<p>Using our definition of Schr&#246;dinger's equation in the interaction picture, we can then construct the operator \( \hat{U} \). We have defined</p>
436438
$$
437439
|\Psi_I(t)\rangle = \exp{(\imath\hat{H}_0t/\hbar)}|\Psi_S(t)\rangle,
438440
$$
@@ -555,8 +557,8 @@ <h2 id="heisenberg-picture-as-alternative">Heisenberg picture as alternative </
555557
$$
556558

557559
<p>which is again a unitary transformation carried out now at the time \( t \) on the
558-
wave function in the Schr\"odinger picture. If we combine this equation with
559-
Schr\"odinger's equation we obtain the following equation of motion
560+
wave function in the Schr&#246;dinger picture. If we combine this equation with
561+
Schr&#246;dinger's equation we obtain the following equation of motion
560562
</p>
561563
$$
562564
\imath \hbar\frac{\partial }{\partial t}|\Psi_H(t)\rangle = 0,
@@ -653,7 +655,7 @@ <h2 id="time-evolution">Time evolution </h2>
653655
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
654656
<h2 id="initial-state-preparation">Initial state preparation </h2>
655657

656-
<p>In the limit \( t_0\rightarrow -\infty \), the solution ot Schr\"odinger's equation is
658+
<p>In the limit \( t_0\rightarrow -\infty \), the solution ot Schr&#246;dinger's equation is
657659
\( |\Phi_0\rangle \), and the eigenenergies are given by
658660
</p>
659661
$$

0 commit comments

Comments
 (0)