You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
('Widely used gates', 2, None, 'widely-used-gates'),
@@ -244,7 +244,7 @@
244
244
<!-- navigation toc: --><li><ahref="#bringing-back-a-state-on-the-bloch-sphere" style="font-size: 80%;">Bringing back a state on the Bloch sphere</a></li>
<!-- navigation toc: --><li><ahref="#part-3-fanous-quantum-gates-circuits-and-simple-algorithms-repetition-from-last-week" style="font-size: 80%;">Part 3: Fanous Quantum gates, circuits and simple algorithms (repetition from last week)</a></li>
247
+
<!-- navigation toc: --><li><ahref="#part-3-famous-quantum-gates-circuits-and-simple-algorithms-repetition-from-last-week" style="font-size: 80%;">Part 3: Famous Quantum gates, circuits and simple algorithms (repetition from last week)</a></li>
<p>The specific hamiltonian we have chosen here serves to exemplify how can represent physical operations in terms of specifc gates, here a one-qubit gate (see whiteboard notes at <ahref="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf" target="_self"><tt>https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf</tt></a>for more details).</p>
<p>The whiteboard notes for this week contain other examples of one qubit gates and their relation to specific unitary transformations and effective Hamiltonian, see <ahref="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf" target="_self"><tt>https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf</tt></a></p>
878
880
879
881
<!-- !split -->
880
-
<h2id="part-3-fanous-quantum-gates-circuits-and-simple-algorithms-repetition-from-last-week" class="anchor">Part 3: Fanous Quantum gates, circuits and simple algorithms (repetition from last week) </h2>
882
+
<h2id="part-3-famous-quantum-gates-circuits-and-simple-algorithms-repetition-from-last-week" class="anchor">Part 3: Famous Quantum gates, circuits and simple algorithms (repetition from last week) </h2>
881
883
882
884
<p>Quantum gates are physical actions that are applied to the physical
883
885
system representing the qubits. Mathematically, they are
<p>The specific hamiltonian we have chosen here serves to exemplify how can represent physical operations in terms of specifc gates, here a one-qubit gate (see whiteboard notes at <ahref="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf" target="_blank"><tt>https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf</tt></a>for more details).</p>
<p>The whiteboard notes for this week contain other examples of one qubit gates and their relation to specific unitary transformations and effective Hamiltonian, see <ahref="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf" target="_blank"><tt>https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf</tt></a></p>
896
900
</section>
897
901
898
902
<section>
899
-
<h2id="part-3-fanous-quantum-gates-circuits-and-simple-algorithms-repetition-from-last-week">Part 3: Fanous Quantum gates, circuits and simple algorithms (repetition from last week) </h2>
903
+
<h2id="part-3-famous-quantum-gates-circuits-and-simple-algorithms-repetition-from-last-week">Part 3: Famous Quantum gates, circuits and simple algorithms (repetition from last week) </h2>
900
904
901
905
<p>Quantum gates are physical actions that are applied to the physical
902
906
system representing the qubits. Mathematically, they are
<p>The specific hamiltonian we have chosen here serves to exemplify how can represent physical operations in terms of specifc gates, here a one-qubit gate (see whiteboard notes at <ahref="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf" target="_blank"><tt>https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf</tt></a>for more details).</p>
<p>The whiteboard notes for this week contain other examples of one qubit gates and their relation to specific unitary transformations and effective Hamiltonian, see <ahref="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf" target="_blank"><tt>https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf</tt></a></p>
<h2id="part-3-fanous-quantum-gates-circuits-and-simple-algorithms-repetition-from-last-week">Part 3: Fanous Quantum gates, circuits and simple algorithms (repetition from last week) </h2>
787
+
<h2id="part-3-famous-quantum-gates-circuits-and-simple-algorithms-repetition-from-last-week">Part 3: Famous Quantum gates, circuits and simple algorithms (repetition from last week) </h2>
786
788
787
789
<p>Quantum gates are physical actions that are applied to the physical
788
790
system representing the qubits. Mathematically, they are
<p>The specific hamiltonian we have chosen here serves to exemplify how can represent physical operations in terms of specifc gates, here a one-qubit gate (see whiteboard notes at <ahref="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf" target="_blank"><tt>https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf</tt></a>for more details).</p>
<p>The whiteboard notes for this week contain other examples of one qubit gates and their relation to specific unitary transformations and effective Hamiltonian, see <ahref="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf" target="_blank"><tt>https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf</tt></a></p>
<h2id="part-3-fanous-quantum-gates-circuits-and-simple-algorithms-repetition-from-last-week">Part 3: Fanous Quantum gates, circuits and simple algorithms (repetition from last week) </h2>
864
+
<h2id="part-3-famous-quantum-gates-circuits-and-simple-algorithms-repetition-from-last-week">Part 3: Famous Quantum gates, circuits and simple algorithms (repetition from last week) </h2>
863
865
864
866
<p>Quantum gates are physical actions that are applied to the physical
865
867
system representing the qubits. Mathematically, they are
0 commit comments