Skip to content

Commit b520df4

Browse files
committed
update week 4
1 parent 2ecbc3b commit b520df4

File tree

8 files changed

+309
-276
lines changed

8 files changed

+309
-276
lines changed

doc/pub/week4/html/week4-bs.html

Lines changed: 7 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -108,11 +108,11 @@
108108
'bringing-back-a-state-on-the-bloch-sphere'),
109109
('Time evolution', 2, None, 'time-evolution'),
110110
('Final expression', 2, None, 'final-expression'),
111-
('Part 3: Fanous Quantum gates, circuits and simple algorithms '
111+
('Part 3: Famous Quantum gates, circuits and simple algorithms '
112112
'(repetition from last week)',
113113
2,
114114
None,
115-
'part-3-fanous-quantum-gates-circuits-and-simple-algorithms-repetition-from-last-week'),
115+
'part-3-famous-quantum-gates-circuits-and-simple-algorithms-repetition-from-last-week'),
116116
('Quantum circuits', 2, None, 'quantum-circuits'),
117117
('Single-Qubit Gates', 2, None, 'single-qubit-gates'),
118118
('Widely used gates', 2, None, 'widely-used-gates'),
@@ -244,7 +244,7 @@
244244
<!-- navigation toc: --> <li><a href="#bringing-back-a-state-on-the-bloch-sphere" style="font-size: 80%;">Bringing back a state on the Bloch sphere</a></li>
245245
<!-- navigation toc: --> <li><a href="#time-evolution" style="font-size: 80%;">Time evolution</a></li>
246246
<!-- navigation toc: --> <li><a href="#final-expression" style="font-size: 80%;">Final expression</a></li>
247-
<!-- navigation toc: --> <li><a href="#part-3-fanous-quantum-gates-circuits-and-simple-algorithms-repetition-from-last-week" style="font-size: 80%;">Part 3: Fanous Quantum gates, circuits and simple algorithms (repetition from last week)</a></li>
247+
<!-- navigation toc: --> <li><a href="#part-3-famous-quantum-gates-circuits-and-simple-algorithms-repetition-from-last-week" style="font-size: 80%;">Part 3: Famous Quantum gates, circuits and simple algorithms (repetition from last week)</a></li>
248248
<!-- navigation toc: --> <li><a href="#quantum-circuits" style="font-size: 80%;">Quantum circuits</a></li>
249249
<!-- navigation toc: --> <li><a href="#single-qubit-gates" style="font-size: 80%;">Single-Qubit Gates</a></li>
250250
<!-- navigation toc: --> <li><a href="#widely-used-gates" style="font-size: 80%;">Widely used gates</a></li>
@@ -851,7 +851,7 @@ <h2 id="bringing-back-a-state-on-the-bloch-sphere" class="anchor">Bringing back
851851
<h2 id="time-evolution" class="anchor">Time evolution </h2>
852852

853853
<p>Since the hamiltonian is time-independent, the state \( \vert \psi(0)
854-
\rangle \), our system will evolve according to unitary transformation
854+
\rangle \), our system will evolve according to the unitary transformation
855855
</p>
856856
$$
857857
\vert \psi(t) \rangle = U(t)\vert \psi(0) \rangle=\exp{\imath\omega_L t\sigma_z/2}\vert \psi(0) \rangle.
@@ -862,6 +862,7 @@ <h2 id="time-evolution" class="anchor">Time evolution </h2>
862862
\vert \psi(t) \rangle=\exp{\imath\omega_L t\sigma_z/2}\cos{(\frac{\theta}{2})}\vert 0\rangle +\exp{\imath\omega_L t\sigma_z/2}\exp{\imath\phi}\sin{(\frac{\theta}{2})}\vert 1\rangle.
863863
$$
864864

865+
<p>The specific hamiltonian we have chosen here serves to exemplify how can represent physical operations in terms of specifc gates, here a one-qubit gate (see whiteboard notes at <a href="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf" target="_self"><tt>https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf</tt></a>for more details).</p>
865866

866867
<!-- !split -->
867868
<h2 id="final-expression" class="anchor">Final expression </h2>
@@ -875,9 +876,10 @@ <h2 id="final-expression" class="anchor">Final expression </h2>
875876
\vert \psi(t) \rangle=\exp{\imath\omega_L t/2}\cos{(\frac{\theta}{2})}\vert 0\rangle +\exp{-\imath\omega_L t/2}\exp{\imath\phi}\sin{(\frac{\theta}{2})}\vert 1\rangle.
876877
$$
877878

879+
<p>The whiteboard notes for this week contain other examples of one qubit gates and their relation to specific unitary transformations and effective Hamiltonian, see <a href="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf" target="_self"><tt>https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf</tt></a></p>
878880

879881
<!-- !split -->
880-
<h2 id="part-3-fanous-quantum-gates-circuits-and-simple-algorithms-repetition-from-last-week" class="anchor">Part 3: Fanous Quantum gates, circuits and simple algorithms (repetition from last week) </h2>
882+
<h2 id="part-3-famous-quantum-gates-circuits-and-simple-algorithms-repetition-from-last-week" class="anchor">Part 3: Famous Quantum gates, circuits and simple algorithms (repetition from last week) </h2>
881883

882884
<p>Quantum gates are physical actions that are applied to the physical
883885
system representing the qubits. Mathematically, they are

doc/pub/week4/html/week4-reveal.html

Lines changed: 6 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -862,7 +862,7 @@ <h2 id="bringing-back-a-state-on-the-bloch-sphere">Bringing back a state on the
862862
<h2 id="time-evolution">Time evolution </h2>
863863

864864
<p>Since the hamiltonian is time-independent, the state \( \vert \psi(0)
865-
\rangle \), our system will evolve according to unitary transformation
865+
\rangle \), our system will evolve according to the unitary transformation
866866
</p>
867867
<p>&nbsp;<br>
868868
$$
@@ -876,6 +876,8 @@ <h2 id="time-evolution">Time evolution </h2>
876876
\vert \psi(t) \rangle=\exp{\imath\omega_L t\sigma_z/2}\cos{(\frac{\theta}{2})}\vert 0\rangle +\exp{\imath\omega_L t\sigma_z/2}\exp{\imath\phi}\sin{(\frac{\theta}{2})}\vert 1\rangle.
877877
$$
878878
<p>&nbsp;<br>
879+
880+
<p>The specific hamiltonian we have chosen here serves to exemplify how can represent physical operations in terms of specifc gates, here a one-qubit gate (see whiteboard notes at <a href="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf" target="_blank"><tt>https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf</tt></a>for more details).</p>
879881
</section>
880882

881883
<section>
@@ -893,10 +895,12 @@ <h2 id="final-expression">Final expression </h2>
893895
\vert \psi(t) \rangle=\exp{\imath\omega_L t/2}\cos{(\frac{\theta}{2})}\vert 0\rangle +\exp{-\imath\omega_L t/2}\exp{\imath\phi}\sin{(\frac{\theta}{2})}\vert 1\rangle.
894896
$$
895897
<p>&nbsp;<br>
898+
899+
<p>The whiteboard notes for this week contain other examples of one qubit gates and their relation to specific unitary transformations and effective Hamiltonian, see <a href="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf" target="_blank"><tt>https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf</tt></a></p>
896900
</section>
897901

898902
<section>
899-
<h2 id="part-3-fanous-quantum-gates-circuits-and-simple-algorithms-repetition-from-last-week">Part 3: Fanous Quantum gates, circuits and simple algorithms (repetition from last week) </h2>
903+
<h2 id="part-3-famous-quantum-gates-circuits-and-simple-algorithms-repetition-from-last-week">Part 3: Famous Quantum gates, circuits and simple algorithms (repetition from last week) </h2>
900904

901905
<p>Quantum gates are physical actions that are applied to the physical
902906
system representing the qubits. Mathematically, they are

doc/pub/week4/html/week4-solarized.html

Lines changed: 6 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -109,11 +109,11 @@
109109
'bringing-back-a-state-on-the-bloch-sphere'),
110110
('Time evolution', 2, None, 'time-evolution'),
111111
('Final expression', 2, None, 'final-expression'),
112-
('Part 3: Fanous Quantum gates, circuits and simple algorithms '
112+
('Part 3: Famous Quantum gates, circuits and simple algorithms '
113113
'(repetition from last week)',
114114
2,
115115
None,
116-
'part-3-fanous-quantum-gates-circuits-and-simple-algorithms-repetition-from-last-week'),
116+
'part-3-famous-quantum-gates-circuits-and-simple-algorithms-repetition-from-last-week'),
117117
('Quantum circuits', 2, None, 'quantum-circuits'),
118118
('Single-Qubit Gates', 2, None, 'single-qubit-gates'),
119119
('Widely used gates', 2, None, 'widely-used-gates'),
@@ -756,7 +756,7 @@ <h2 id="bringing-back-a-state-on-the-bloch-sphere">Bringing back a state on the
756756
<h2 id="time-evolution">Time evolution </h2>
757757

758758
<p>Since the hamiltonian is time-independent, the state \( \vert \psi(0)
759-
\rangle \), our system will evolve according to unitary transformation
759+
\rangle \), our system will evolve according to the unitary transformation
760760
</p>
761761
$$
762762
\vert \psi(t) \rangle = U(t)\vert \psi(0) \rangle=\exp{\imath\omega_L t\sigma_z/2}\vert \psi(0) \rangle.
@@ -767,6 +767,7 @@ <h2 id="time-evolution">Time evolution </h2>
767767
\vert \psi(t) \rangle=\exp{\imath\omega_L t\sigma_z/2}\cos{(\frac{\theta}{2})}\vert 0\rangle +\exp{\imath\omega_L t\sigma_z/2}\exp{\imath\phi}\sin{(\frac{\theta}{2})}\vert 1\rangle.
768768
$$
769769

770+
<p>The specific hamiltonian we have chosen here serves to exemplify how can represent physical operations in terms of specifc gates, here a one-qubit gate (see whiteboard notes at <a href="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf" target="_blank"><tt>https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf</tt></a>for more details).</p>
770771

771772
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
772773
<h2 id="final-expression">Final expression </h2>
@@ -780,9 +781,10 @@ <h2 id="final-expression">Final expression </h2>
780781
\vert \psi(t) \rangle=\exp{\imath\omega_L t/2}\cos{(\frac{\theta}{2})}\vert 0\rangle +\exp{-\imath\omega_L t/2}\exp{\imath\phi}\sin{(\frac{\theta}{2})}\vert 1\rangle.
781782
$$
782783

784+
<p>The whiteboard notes for this week contain other examples of one qubit gates and their relation to specific unitary transformations and effective Hamiltonian, see <a href="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf" target="_blank"><tt>https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf</tt></a></p>
783785

784786
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
785-
<h2 id="part-3-fanous-quantum-gates-circuits-and-simple-algorithms-repetition-from-last-week">Part 3: Fanous Quantum gates, circuits and simple algorithms (repetition from last week) </h2>
787+
<h2 id="part-3-famous-quantum-gates-circuits-and-simple-algorithms-repetition-from-last-week">Part 3: Famous Quantum gates, circuits and simple algorithms (repetition from last week) </h2>
786788

787789
<p>Quantum gates are physical actions that are applied to the physical
788790
system representing the qubits. Mathematically, they are

doc/pub/week4/html/week4.html

Lines changed: 6 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -186,11 +186,11 @@
186186
'bringing-back-a-state-on-the-bloch-sphere'),
187187
('Time evolution', 2, None, 'time-evolution'),
188188
('Final expression', 2, None, 'final-expression'),
189-
('Part 3: Fanous Quantum gates, circuits and simple algorithms '
189+
('Part 3: Famous Quantum gates, circuits and simple algorithms '
190190
'(repetition from last week)',
191191
2,
192192
None,
193-
'part-3-fanous-quantum-gates-circuits-and-simple-algorithms-repetition-from-last-week'),
193+
'part-3-famous-quantum-gates-circuits-and-simple-algorithms-repetition-from-last-week'),
194194
('Quantum circuits', 2, None, 'quantum-circuits'),
195195
('Single-Qubit Gates', 2, None, 'single-qubit-gates'),
196196
('Widely used gates', 2, None, 'widely-used-gates'),
@@ -833,7 +833,7 @@ <h2 id="bringing-back-a-state-on-the-bloch-sphere">Bringing back a state on the
833833
<h2 id="time-evolution">Time evolution </h2>
834834

835835
<p>Since the hamiltonian is time-independent, the state \( \vert \psi(0)
836-
\rangle \), our system will evolve according to unitary transformation
836+
\rangle \), our system will evolve according to the unitary transformation
837837
</p>
838838
$$
839839
\vert \psi(t) \rangle = U(t)\vert \psi(0) \rangle=\exp{\imath\omega_L t\sigma_z/2}\vert \psi(0) \rangle.
@@ -844,6 +844,7 @@ <h2 id="time-evolution">Time evolution </h2>
844844
\vert \psi(t) \rangle=\exp{\imath\omega_L t\sigma_z/2}\cos{(\frac{\theta}{2})}\vert 0\rangle +\exp{\imath\omega_L t\sigma_z/2}\exp{\imath\phi}\sin{(\frac{\theta}{2})}\vert 1\rangle.
845845
$$
846846

847+
<p>The specific hamiltonian we have chosen here serves to exemplify how can represent physical operations in terms of specifc gates, here a one-qubit gate (see whiteboard notes at <a href="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf" target="_blank"><tt>https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf</tt></a>for more details).</p>
847848

848849
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
849850
<h2 id="final-expression">Final expression </h2>
@@ -857,9 +858,10 @@ <h2 id="final-expression">Final expression </h2>
857858
\vert \psi(t) \rangle=\exp{\imath\omega_L t/2}\cos{(\frac{\theta}{2})}\vert 0\rangle +\exp{-\imath\omega_L t/2}\exp{\imath\phi}\sin{(\frac{\theta}{2})}\vert 1\rangle.
858859
$$
859860

861+
<p>The whiteboard notes for this week contain other examples of one qubit gates and their relation to specific unitary transformations and effective Hamiltonian, see <a href="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf" target="_blank"><tt>https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf</tt></a></p>
860862

861863
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
862-
<h2 id="part-3-fanous-quantum-gates-circuits-and-simple-algorithms-repetition-from-last-week">Part 3: Fanous Quantum gates, circuits and simple algorithms (repetition from last week) </h2>
864+
<h2 id="part-3-famous-quantum-gates-circuits-and-simple-algorithms-repetition-from-last-week">Part 3: Famous Quantum gates, circuits and simple algorithms (repetition from last week) </h2>
863865

864866
<p>Quantum gates are physical actions that are applied to the physical
865867
system representing the qubits. Mathematically, they are
1 Byte
Binary file not shown.

0 commit comments

Comments
 (0)