|
| 1 | +import pennylane as qml |
| 2 | +from pennylane import numpy as np |
| 3 | +import torch |
| 4 | +import torch.nn as nn |
| 5 | +import torch.optim as optim |
| 6 | +from torch.utils.data import DataLoader, TensorDataset |
| 7 | + |
| 8 | +# Set random seed for reproducibility |
| 9 | +torch.manual_seed(42) |
| 10 | + |
| 11 | +# Quantum device with 2 qubits |
| 12 | +n_qubits = 2 |
| 13 | +dev = qml.device("default.qubit", wires=n_qubits) |
| 14 | + |
| 15 | +# Quantum circuit (variational ansatz) |
| 16 | +def quantum_circuit(inputs, weights): |
| 17 | + # Encode classical data |
| 18 | + for i in range(n_qubits): |
| 19 | + qml.RY(inputs[i], wires=i) |
| 20 | + |
| 21 | + # Trainable layer |
| 22 | + qml.CNOT(wires=[0, 1]) |
| 23 | + for i in range(n_qubits): |
| 24 | + qml.Rot(*weights[i], wires=i) |
| 25 | + |
| 26 | +# QNode: quantum node that can be called like a function |
| 27 | +@qml.qnode(dev, interface="torch") |
| 28 | +def qnode(inputs, weights): |
| 29 | + quantum_circuit(inputs, weights) |
| 30 | + return [qml.expval(qml.PauliZ(i)) for i in range(n_qubits)] |
| 31 | + |
| 32 | +# Torch module for quantum layer |
| 33 | +class QuantumLayer(nn.Module): |
| 34 | + def __init__(self): |
| 35 | + super().__init__() |
| 36 | + # Initialize trainable parameters for each qubit |
| 37 | + self.q_weights = nn.Parameter(0.01 * torch.randn(n_qubits, 3)) |
| 38 | + |
| 39 | + def forward(self, x): |
| 40 | + # Apply quantum circuit to each input sample |
| 41 | + return torch.stack([qnode(x[i], self.q_weights) for i in range(x.shape[0])]) |
| 42 | + |
| 43 | +# Full hybrid quantum-classical neural network |
| 44 | +class HybridQNN(nn.Module): |
| 45 | + def __init__(self): |
| 46 | + super().__init__() |
| 47 | + self.quantum_layer = QuantumLayer() |
| 48 | + self.classifier = nn.Sequential( |
| 49 | + nn.Linear(n_qubits, 4), |
| 50 | + nn.ReLU(), |
| 51 | + nn.Linear(4, 1), |
| 52 | + nn.Sigmoid() |
| 53 | + ) |
| 54 | + |
| 55 | + def forward(self, x): |
| 56 | + q_out = self.quantum_layer(x) |
| 57 | + return self.classifier(q_out) |
| 58 | + |
| 59 | +# Toy dataset (binary classification) |
| 60 | +X = torch.tensor([[0.0, 0.1], [0.1, 0.2], [3.0, 3.1], [3.1, 3.0]], dtype=torch.float32) |
| 61 | +Y = torch.tensor([[0.], [0.], [1.], [1.]], dtype=torch.float32) |
| 62 | + |
| 63 | +dataset = TensorDataset(X, Y) |
| 64 | +loader = DataLoader(dataset, batch_size=2, shuffle=True) |
| 65 | + |
| 66 | +# Instantiate model, loss, optimizer |
| 67 | +model = HybridQNN() |
| 68 | +criterion = nn.BCELoss() |
| 69 | +optimizer = optim.Adam(model.parameters(), lr=0.01) |
| 70 | + |
| 71 | +# Training loop |
| 72 | +for epoch in range(30): |
| 73 | + for xb, yb in loader: |
| 74 | + pred = model(xb) |
| 75 | + loss = criterion(pred, yb) |
| 76 | + optimizer.zero_grad() |
| 77 | + loss.backward() |
| 78 | + optimizer.step() |
| 79 | + print(f"Epoch {epoch+1}, Loss: {loss.item():.4f}") |
0 commit comments