|
| 1 | +import pennylane as qml |
| 2 | +from pennylane import numpy as np |
| 3 | +import torch |
| 4 | +from torch.utils.data import DataLoader, TensorDataset |
| 5 | +import torch.nn as nn |
| 6 | +import torch.optim as optim |
| 7 | + |
| 8 | +# Create a quantum device with 2 qubits |
| 9 | +dev = qml.device("default.qubit", wires=2) |
| 10 | + |
| 11 | +# Define quantum feature map (encoding classical data into quantum states) |
| 12 | +def feature_map(x): |
| 13 | + qml.Hadamard(wires=0) |
| 14 | + qml.Hadamard(wires=1) |
| 15 | + qml.RZ(x[0], wires=0) |
| 16 | + qml.RZ(x[1], wires=1) |
| 17 | + qml.CNOT(wires=[0, 1]) |
| 18 | + qml.RY(x[0], wires=0) |
| 19 | + qml.RY(x[1], wires=1) |
| 20 | + |
| 21 | +# Variational ansatz (simple circuit to be trained) |
| 22 | +def variational_circuit(params): |
| 23 | + qml.RY(params[0], wires=0) |
| 24 | + qml.RY(params[1], wires=1) |
| 25 | + qml.CNOT(wires=[0, 1]) |
| 26 | + qml.RZ(params[2], wires=1) |
| 27 | + |
| 28 | +# Quantum node |
| 29 | +@qml.qnode(dev, interface="torch") |
| 30 | +def circuit(x, weights): |
| 31 | + feature_map(x) |
| 32 | + variational_circuit(weights) |
| 33 | + return qml.expval(qml.PauliZ(0)) |
| 34 | + |
| 35 | +# Create a torch-compatible quantum layer |
| 36 | +class QuantumLayer(nn.Module): |
| 37 | + def __init__(self): |
| 38 | + super().__init__() |
| 39 | + # Initialize trainable parameters |
| 40 | + self.weights = nn.Parameter(0.01 * torch.randn(3)) |
| 41 | + |
| 42 | + def forward(self, x): |
| 43 | + # Apply quantum circuit to each input in the batch |
| 44 | + return torch.stack([circuit(x[i], self.weights) for i in range(x.shape[0])]) |
| 45 | + |
| 46 | +# Define the full model |
| 47 | +class QSVM(nn.Module): |
| 48 | + def __init__(self): |
| 49 | + super().__init__() |
| 50 | + self.q_layer = QuantumLayer() |
| 51 | + self.classifier = nn.Linear(1, 1) |
| 52 | + |
| 53 | + def forward(self, x): |
| 54 | + q_out = self.q_layer(x).unsqueeze(1) # Add dimension for linear layer |
| 55 | + return torch.sigmoid(self.classifier(q_out)) |
| 56 | + |
| 57 | +# Example toy dataset (linearly separable) |
| 58 | +X = torch.tensor([[0.1, 0.2], [1.2, 0.9], [0.2, 0.1], [1.0, 1.1]], dtype=torch.float32) |
| 59 | +Y = torch.tensor([[0.], [1.], [0.], [1.]], dtype=torch.float32) |
| 60 | + |
| 61 | +dataset = TensorDataset(X, Y) |
| 62 | +loader = DataLoader(dataset, batch_size=2, shuffle=True) |
| 63 | + |
| 64 | +# Instantiate model, loss, and optimizer |
| 65 | +model = QSVM() |
| 66 | +criterion = nn.BCELoss() |
| 67 | +optimizer = optim.Adam(model.parameters(), lr=0.01) |
| 68 | + |
| 69 | +# Training loop |
| 70 | +for epoch in range(50): |
| 71 | + for xb, yb in loader: |
| 72 | + pred = model(xb) |
| 73 | + loss = criterion(pred, yb) |
| 74 | + optimizer.zero_grad() |
| 75 | + loss.backward() |
| 76 | + optimizer.step() |
| 77 | + print(f"Epoch {epoch+1}, Loss: {loss.item():.4f}") |
0 commit comments