You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<!-- navigation toc: --><li><ahref="#part-2-specific-realizations-and-famous-gates" style="font-size: 80%;">Part 2: Specific realizations and famous gates</a></li>
221
-
<!-- navigation toc: --><li><ahref="#part-3-fanous-quantum-gates-circuits-and-simple-algorithms-parts-from-last-week" style="font-size: 80%;">Part 3: Fanous Quantum gates, circuits and simple algorithms (parts from last week)</a></li>
<!-- navigation toc: --><li><ahref="#field-along-the-z-axis" style="font-size: 80%;">Field along the \( z \)-axis</a></li>
244
+
<!-- navigation toc: --><li><ahref="#bringing-back-a-state-on-the-bloch-sphere" style="font-size: 80%;">Bringing back a state on the Bloch sphere</a></li>
@@ -288,13 +319,18 @@ <h2 id="plans-for-the-week-of-february-10-14" class="anchor">Plans for the week
288
319
289
320
<ol>
290
321
<li> Reminder from last week on gates and circuits</li>
291
-
<li> One-qubit and two-qubit gates, background and realizations
292
-
<!-- o Entropy as a measurement of entanglement --></li>
322
+
<li> One-qubit and two-qubit gates, background and realizations</li>
293
323
<li> Simple Hamiltonian systems</li>
294
324
<li><ahref="https://youtu.be/" target="_self">Video of lecture to be added</a>
295
325
<!-- o <a href="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2025/NotesFebruary12.pdf" target="_self">Whiteboard notes</a> --></li>
296
326
</ol>
297
327
<!-- !split -->
328
+
<h2id="readings" class="anchor">Readings </h2>
329
+
330
+
<ol>
331
+
<li> For the discussion of one-qubit, two-qubit and other gates, sections 2.6-2.11 and 3.1-3.4 of Hundt's book <b>Quantum Computing for Programmers</b>, contain most of the relevant information.</li>
332
+
</ol>
333
+
<!-- !split -->
298
334
<h2id="gates-the-whys-and-hows" class="anchor">Gates, the whys and hows </h2>
299
335
300
336
<p>In quantum computing it is common to rewrite various unitary
@@ -320,7 +356,7 @@ <h2 id="gates-the-whys-and-hows" class="anchor">Gates, the whys and hows </h2>
320
356
<h2id="structure-of-the-lecture" class="anchor">Structure of the lecture </h2>
321
357
322
358
<ol>
323
-
<li> First we review some of the basic ways of representing the solution to the Schr\"odinger's equation, introducing the so-called intenraction, Heisenberg and Schr\"odinger prictures and unitary transformations.</li>
359
+
<li> First we review some of the basic ways of representing the solution to the Schr\"odinger equation, introducing the so-called Interaction, Heisenberg and Schr\"odinger prictures and unitary transformations.</li>
324
360
<li> Secondly, we present examples of physical processes and how they can be represented as unitary operations on a given state.</li>
325
361
<li> These unitary transformations are then represented as gates. Setting gates together gives us a final circuit which can represent a specific physical system</li>
<h2id="part-2-specific-realizations-and-famous-gates" class="anchor">Part 2: Specific realizations and famous gates </h2>
754
790
755
-
<p>This part is not yet ready and will be part of the whiteboard notes.
756
-
I will try to get it ready by the end of Tuesday, Feb 11
791
+
<p>Nuclear magnetic resonance (NMR) quantum computing is one of the several
792
+
proposed approaches for constructing a quantum computer. It uses the
793
+
spin states of nuclei within molecules as qubits. The quantum states
794
+
are probed through the nuclear magnetic resonances, allowing the
795
+
system to be implemented as a variation of nuclear magnetic resonance
796
+
spectroscopy. NMR differs from other implementations of quantum
797
+
computers in that it uses an ensemble of systems, in this case
798
+
molecules, rather than a single pure state.
799
+
</p>
800
+
801
+
<p>You can read more about this at <ahref="https://cba.mit.edu/docs/papers/98.06.sciqc.pdf" target="_self"><tt>https://cba.mit.edu/docs/papers/98.06.sciqc.pdf</tt></a></p>
<p>In exercise 4 from the second week, we showed that, given \( \boldsymbol{A} \) an operator on a vector space satisfying \( \boldsymbol{A}^2=1 \) and \( \alpha \) any real constant, we had</p>
<h2id="part-3-fanous-quantum-gates-circuits-and-simple-algorithms-parts-from-last-week" class="anchor">Part 3: Fanous Quantum gates, circuits and simple algorithms (parts from last week) </h2>
880
+
<h2id="part-3-fanous-quantum-gates-circuits-and-simple-algorithms-repetition-from-last-week" class="anchor">Part 3: Fanous Quantum gates, circuits and simple algorithms (repetition from last week) </h2>
761
881
762
882
<p>Quantum gates are physical actions that are applied to the physical
763
883
system representing the qubits. Mathematically, they are
@@ -2127,6 +2247,74 @@ <h2 id="code-example" class="anchor">Code example </h2>
2127
2247
the angles \( \theta \) and \( \phi \). This will lead us to the so-called Variational Quantum Eigensolver to be discussed next week.
2128
2248
</p>
2129
2249
2250
+
<!-- !split -->
2251
+
<h2id="topics-next-week" class="anchor">Topics next week </h2>
2252
+
<ol>
2253
+
<li> We will extend the above one-qubit Hamiltonian to a two-qubit problem and analyze how we can set up its simulation</li>
2254
+
<li> Before we introduce the Variational Quantum Eigensolver (VQE), we need to discuss entropy as a measure of entanglement</li>
2255
+
<li> If we get time, we start our discussion of the VQE algorithm</li>
2256
+
</ol>
2257
+
<!-- !split -->
2258
+
<h2id="exercises-this-week-hamiltonians-and-project-1" class="anchor">Exercises this week: Hamiltonians and project 1 </h2>
2259
+
2260
+
<p>As an initial test, we consider a simple \( 2\times 2 \) real
2261
+
Hamiltonian consisting of a diagonal part \( H_0 \) and off-diagonal part
2262
+
\( H_I \), playing the roles of a non-interactive one-body and interactive
2263
+
two-body part respectively. Defined through their matrix elements, we
2264
+
express them in the Pauli basis \( \vert 0\rangle \) and \( \vert 1 \rangle \)
2265
+
</p>
2266
+
2267
+
$$
2268
+
\begin{align*}
2269
+
\begin{split}
2270
+
H &= H_0 + H_I \\
2271
+
H_0 = \begin{bmatrix}
2272
+
E_1 & 0 \\
2273
+
0 & E_2
2274
+
\end{bmatrix}&, \hspace{20px}
2275
+
H_I = \lambda \begin{bmatrix}
2276
+
V_{11} & V_{12} \\
2277
+
V_{21} & V_{22}
2278
+
\end{bmatrix}
2279
+
\end{split}
2280
+
\end{align*}
2281
+
$$
2282
+
2283
+
<p>Where \( \lambda \in [0,1] \) is a coupling constant parameterizing the strength of the interaction. </p>
2284
+
2285
+
<!-- !split -->
2286
+
<h2id="rewriting-in-terms-of-pauli-matrices" class="anchor">Rewriting in terms of Pauli matrices </h2>
<p>show that by combining the identity and \( Z \) Pauli matrix, this can be expressed as</p>
2294
+
2295
+
$$
2296
+
H_0 = E_+ I + E_- Z
2297
+
$$
2298
+
2299
+
2300
+
<!-- !split -->
2301
+
<h2id="the-interaction-part" class="anchor">The interaction part </h2>
2302
+
2303
+
<p>For \( H_1 \) we use the same trick to fill the diagonal, defining \( V_+ = (V_{11} + V_{22})/2, V_- = (V_{11} - V_{22})/2 \). From the hermiticity requirements of \( H \), we note that \( V_{12} = V_{21} \equiv V_o \). Use this to simplify the problem to a simple \( X \) term. </p>
<p>For the above system show that the Pauli \( X \) matrix can be rewritten in terms of the Hadamard matrices and the Pauli \( Z \) matrix, that is</p>
2314
+
$$
2315
+
X=HZH.
2316
+
$$
2317
+
2130
2318
<!-- ------------------- end of main content --------------- -->
0 commit comments