Skip to content

Commit 8afac4a

Browse files
committed
never ending story of typos
1 parent fd02504 commit 8afac4a

File tree

8 files changed

+408
-408
lines changed

8 files changed

+408
-408
lines changed

doc/pub/week6/html/week6-bs.html

Lines changed: 32 additions & 32 deletions
Original file line numberDiff line numberDiff line change
@@ -382,18 +382,18 @@ <h2 id="single-qubit-gates" class="anchor">Single qubit gates </h2>
382382

383383
<p>The Pauli matrices (and gate operations following therefrom) are defined as</p>
384384
$$
385-
X \equiv \sigma_x = \begin{pmatrix}
385+
\boldsymbol{X} \equiv \sigma_x = \begin{bmatrix}
386386
0 & 1 \\
387387
1 & 0
388-
\end{pmatrix}, \quad
389-
Y \equiv \sigma_y = \begin{pmatrix}
388+
\end{bmatrix}, \quad
389+
\boldsymbol{Y} \equiv \sigma_y = \begin{bmatrix}
390390
0 & -i \\
391391
i & 0
392-
\end{pmatrix}, \quad
393-
Z \equiv \sigma_z = \begin{pmatrix}
392+
\end{bmatrix}, \quad
393+
\boldsymbol{Z} \equiv \sigma_z = \begin{bmatrix}
394394
1 & 0 \\
395395
0 & -1
396-
\end{pmatrix}.
396+
\end{bmatrix}.
397397
$$
398398

399399

@@ -429,10 +429,10 @@ <h2 id="hadamard-gate" class="anchor">Hadamard gate </h2>
429429

430430
<p>The Hadamard gate is defined as</p>
431431
$$
432-
\boldsymbol{H} = \frac{1}{\sqrt{2}} \begin{pmatrix}
432+
\boldsymbol{H} = \frac{1}{\sqrt{2}} \begin{bmatrix}
433433
1 & 1 \\
434434
1 & -1
435-
\end{pmatrix}.
435+
\end{bmatrix}.
436436
$$
437437

438438
<p>It creates a superposition of the \) \vert 0\rangle $ and $ \vert 1\rangle $ states.</p>
@@ -451,10 +451,10 @@ <h2 id="hadamard-gate" class="anchor">Hadamard gate </h2>
451451
<h2 id="phase-gates" class="anchor">Phase Gates </h2>
452452
<p>The phase gate is usually denoted as \( S \) and is defined as</p>
453453
$$
454-
\boldsymbol{S} = \begin{pmatrix}
454+
\boldsymbol{S} = \begin{bmatrix}
455455
1 & 0 \\
456456
0 & i
457-
\end{pmatrix}.
457+
\end{bmatrix}.
458458
$$
459459

460460
<p>It multiplies only the phase of the $ \vert 1\rangle $ state by $ i $.</p>
@@ -471,10 +471,10 @@ <h2 id="the-inverse-of-the-boldsymbol-s-gate" class="anchor">The inverse of the
471471

472472
<p>The inverse</p>
473473
$$
474-
\boldsymbol{S}^\dagger = \begin{pmatrix}
474+
\boldsymbol{S}^\dagger = \begin{bmatrix}
475475
1 & 0 \\
476476
0 & -i
477-
\end{pmatrix}
477+
\end{bmatrix}
478478
$$
479479

480480
<p>is known as the $ \boldsymbol{S}^\dagger$ gate which applies an \( \imath \) phase shift to \( \vert 1\rangle \).</p>
@@ -490,12 +490,12 @@ <h2 id="two-qubit-gates" class="anchor">Two-qubit gates </h2>
490490

491491
<p>The CNOT gate is a two-qubit gate which acts on two qubits, a control qubit and a target qubit. The CNOT gate is defined as</p>
492492
$$
493-
\text{CNOT} = \begin{pmatrix}
493+
\text{CNOT} = \begin{bmatrix}
494494
1 & 0 & 0 & 0 \\
495495
0 & 1 & 0 & 0 \\
496496
0 & 0 & 0 & 1 \\
497497
0 & 0 & 1 & 0
498-
\end{pmatrix}.
498+
\end{bmatrix}.
499499
$$
500500

501501
<p>It is often used to perform linear entanglement on qubits.</p>
@@ -513,12 +513,12 @@ <h2 id="two-qubit-gates" class="anchor">Two-qubit gates </h2>
513513
<h2 id="the-swap-gate" class="anchor">The SWAP gate </h2>
514514
<p>The SWAP gate is a two-qubit gate which swaps the state of two qubits. It is defined as</p>
515515
$$
516-
\text{SWAP} = \begin{pmatrix}
516+
\text{SWAP} = \begin{bmatrix}
517517
1 & 0 & 0 & 0 \\
518518
0 & 0 & 1 & 0 \\
519519
0 & 1 & 0 & 0 \\
520520
0 & 0 & 0 & 1
521-
\end{pmatrix}.
521+
\end{bmatrix}.
522522
$$
523523

524524
$$
@@ -734,10 +734,10 @@ <h2 id="ansatzes" class="anchor">Ansatzes </h2>
734734

735735
<p>Every possible qubit wavefunction \( \left| \psi \right\rangle \) can be presented as a vector: </p>
736736
$$
737-
\left| \psi \right\rangle = \begin{pmatrix}
737+
\left| \psi \right\rangle = \begin{bmatrix}
738738
\cos{\left( \theta/2 \right)}\\
739739
e^{i \varphi} \cdot \sin{\left( \theta/2 \right)}
740-
\end{pmatrix},
740+
\end{bmatrix},
741741
$$
742742

743743
<p>where the numbers \( \theta \) and \( \varphi \) define a point on the unit
@@ -1255,14 +1255,14 @@ <h2 id="in-more-detail" class="anchor">In more detail </h2>
12551255
$$
12561256
\begin{align*}
12571257
&\text{Z eigenvectors} \qquad
1258-
\left| 0 \right\rangle = \begin{pmatrix}
1258+
\left| 0 \right\rangle = \begin{bmatrix}
12591259
1\\
12601260
0
1261-
\end{pmatrix},
1262-
&&\left| 1 \right\rangle = \begin{pmatrix}
1261+
\end{bmatrix},
1262+
&&\left| 1 \right\rangle = \begin{bmatrix}
12631263
0\\
12641264
1
1265-
\end{pmatrix},
1265+
\end{bmatrix},
12661266
\end{align*}
12671267
$$
12681268

@@ -1273,24 +1273,24 @@ <h2 id="for-the-other-two-matrices" class="anchor">For the other two matrices </
12731273
$$
12741274
\begin{align*}
12751275
&\text{X eigenvectors} \qquad
1276-
\left| + \right\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix}
1276+
\left| + \right\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix}
12771277
1\\
12781278
1
1279-
\end{pmatrix},
1280-
&&\left| - \right\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix}
1279+
\end{bmatrix},
1280+
&&\left| - \right\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix}
12811281
1\\
12821282
-1
1283-
\end{pmatrix},
1283+
\end{bmatrix},
12841284
\\
12851285
&\text{Y eigenvectors} \qquad
1286-
\left| +i \right\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix}
1286+
\left| +i \right\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix}
12871287
1\\
12881288
i
1289-
\end{pmatrix},
1290-
&&\left| -i \right\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix}
1289+
\end{bmatrix},
1290+
&&\left| -i \right\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix}
12911291
1\\
12921292
-i
1293-
\end{pmatrix}.
1293+
\end{bmatrix}.
12941294
\end{align*}
12951295
$$
12961296

@@ -1334,10 +1334,10 @@ <h2 id="unitary-transformation-of-boldsymbol-x" class="anchor">Unitary transform
13341334

13351335
<p>If we use the Hadamard gate</p>
13361336
$$
1337-
H = \frac{1}{\sqrt{2}}\begin{pmatrix}
1337+
H = \frac{1}{\sqrt{2}}\begin{bmatrix}
13381338
1 & 1\\
13391339
1 & -1
1340-
\end{pmatrix},
1340+
\end{bmatrix},
13411341
$$
13421342

13431343
<p>we can rewrite</p>

doc/pub/week6/html/week6-reveal.html

Lines changed: 32 additions & 32 deletions
Original file line numberDiff line numberDiff line change
@@ -233,18 +233,18 @@ <h2 id="single-qubit-gates">Single qubit gates </h2>
233233
<p>The Pauli matrices (and gate operations following therefrom) are defined as</p>
234234
<p>&nbsp;<br>
235235
$$
236-
X \equiv \sigma_x = \begin{pmatrix}
236+
\boldsymbol{X} \equiv \sigma_x = \begin{bmatrix}
237237
0 & 1 \\
238238
1 & 0
239-
\end{pmatrix}, \quad
240-
Y \equiv \sigma_y = \begin{pmatrix}
239+
\end{bmatrix}, \quad
240+
\boldsymbol{Y} \equiv \sigma_y = \begin{bmatrix}
241241
0 & -i \\
242242
i & 0
243-
\end{pmatrix}, \quad
244-
Z \equiv \sigma_z = \begin{pmatrix}
243+
\end{bmatrix}, \quad
244+
\boldsymbol{Z} \equiv \sigma_z = \begin{bmatrix}
245245
1 & 0 \\
246246
0 & -1
247-
\end{pmatrix}.
247+
\end{bmatrix}.
248248
$$
249249
<p>&nbsp;<br>
250250
</section>
@@ -289,10 +289,10 @@ <h2 id="hadamard-gate">Hadamard gate </h2>
289289
<p>The Hadamard gate is defined as</p>
290290
<p>&nbsp;<br>
291291
$$
292-
\boldsymbol{H} = \frac{1}{\sqrt{2}} \begin{pmatrix}
292+
\boldsymbol{H} = \frac{1}{\sqrt{2}} \begin{bmatrix}
293293
1 & 1 \\
294294
1 & -1
295-
\end{pmatrix}.
295+
\end{bmatrix}.
296296
$$
297297
<p>&nbsp;<br>
298298

@@ -316,10 +316,10 @@ <h2 id="phase-gates">Phase Gates </h2>
316316
<p>The phase gate is usually denoted as \( S \) and is defined as</p>
317317
<p>&nbsp;<br>
318318
$$
319-
\boldsymbol{S} = \begin{pmatrix}
319+
\boldsymbol{S} = \begin{bmatrix}
320320
1 & 0 \\
321321
0 & i
322-
\end{pmatrix}.
322+
\end{bmatrix}.
323323
$$
324324
<p>&nbsp;<br>
325325

@@ -340,10 +340,10 @@ <h2 id="the-inverse-of-the-boldsymbol-s-gate">The inverse of the \( \boldsymbol
340340
<p>The inverse</p>
341341
<p>&nbsp;<br>
342342
$$
343-
\boldsymbol{S}^\dagger = \begin{pmatrix}
343+
\boldsymbol{S}^\dagger = \begin{bmatrix}
344344
1 & 0 \\
345345
0 & -i
346-
\end{pmatrix}
346+
\end{bmatrix}
347347
$$
348348
<p>&nbsp;<br>
349349

@@ -364,12 +364,12 @@ <h2 id="two-qubit-gates">Two-qubit gates </h2>
364364
<p>The CNOT gate is a two-qubit gate which acts on two qubits, a control qubit and a target qubit. The CNOT gate is defined as</p>
365365
<p>&nbsp;<br>
366366
$$
367-
\text{CNOT} = \begin{pmatrix}
367+
\text{CNOT} = \begin{bmatrix}
368368
1 & 0 & 0 & 0 \\
369369
0 & 1 & 0 & 0 \\
370370
0 & 0 & 0 & 1 \\
371371
0 & 0 & 1 & 0
372-
\end{pmatrix}.
372+
\end{bmatrix}.
373373
$$
374374
<p>&nbsp;<br>
375375

@@ -391,12 +391,12 @@ <h2 id="the-swap-gate">The SWAP gate </h2>
391391
<p>The SWAP gate is a two-qubit gate which swaps the state of two qubits. It is defined as</p>
392392
<p>&nbsp;<br>
393393
$$
394-
\text{SWAP} = \begin{pmatrix}
394+
\text{SWAP} = \begin{bmatrix}
395395
1 & 0 & 0 & 0 \\
396396
0 & 0 & 1 & 0 \\
397397
0 & 1 & 0 & 0 \\
398398
0 & 0 & 0 & 1
399-
\end{pmatrix}.
399+
\end{bmatrix}.
400400
$$
401401
<p>&nbsp;<br>
402402

@@ -642,10 +642,10 @@ <h2 id="ansatzes">Ansatzes </h2>
642642
<p>Every possible qubit wavefunction \( \left| \psi \right\rangle \) can be presented as a vector: </p>
643643
<p>&nbsp;<br>
644644
$$
645-
\left| \psi \right\rangle = \begin{pmatrix}
645+
\left| \psi \right\rangle = \begin{bmatrix}
646646
\cos{\left( \theta/2 \right)}\\
647647
e^{i \varphi} \cdot \sin{\left( \theta/2 \right)}
648-
\end{pmatrix},
648+
\end{bmatrix},
649649
$$
650650
<p>&nbsp;<br>
651651

@@ -1237,14 +1237,14 @@ <h2 id="in-more-detail">In more detail </h2>
12371237
$$
12381238
\begin{align*}
12391239
&\text{Z eigenvectors} \qquad
1240-
\left| 0 \right\rangle = \begin{pmatrix}
1240+
\left| 0 \right\rangle = \begin{bmatrix}
12411241
1\\
12421242
0
1243-
\end{pmatrix},
1244-
&&\left| 1 \right\rangle = \begin{pmatrix}
1243+
\end{bmatrix},
1244+
&&\left| 1 \right\rangle = \begin{bmatrix}
12451245
0\\
12461246
1
1247-
\end{pmatrix},
1247+
\end{bmatrix},
12481248
\end{align*}
12491249
$$
12501250
<p>&nbsp;<br>
@@ -1257,24 +1257,24 @@ <h2 id="for-the-other-two-matrices">For the other two matrices </h2>
12571257
$$
12581258
\begin{align*}
12591259
&\text{X eigenvectors} \qquad
1260-
\left| + \right\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix}
1260+
\left| + \right\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix}
12611261
1\\
12621262
1
1263-
\end{pmatrix},
1264-
&&\left| - \right\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix}
1263+
\end{bmatrix},
1264+
&&\left| - \right\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix}
12651265
1\\
12661266
-1
1267-
\end{pmatrix},
1267+
\end{bmatrix},
12681268
\\
12691269
&\text{Y eigenvectors} \qquad
1270-
\left| +i \right\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix}
1270+
\left| +i \right\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix}
12711271
1\\
12721272
i
1273-
\end{pmatrix},
1274-
&&\left| -i \right\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix}
1273+
\end{bmatrix},
1274+
&&\left| -i \right\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix}
12751275
1\\
12761276
-i
1277-
\end{pmatrix}.
1277+
\end{bmatrix}.
12781278
\end{align*}
12791279
$$
12801280
<p>&nbsp;<br>
@@ -1324,10 +1324,10 @@ <h2 id="unitary-transformation-of-boldsymbol-x">Unitary transformation of \( \bo
13241324
<p>If we use the Hadamard gate</p>
13251325
<p>&nbsp;<br>
13261326
$$
1327-
H = \frac{1}{\sqrt{2}}\begin{pmatrix}
1327+
H = \frac{1}{\sqrt{2}}\begin{bmatrix}
13281328
1 & 1\\
13291329
1 & -1
1330-
\end{pmatrix},
1330+
\end{bmatrix},
13311331
$$
13321332
<p>&nbsp;<br>
13331333

0 commit comments

Comments
 (0)