Skip to content

Commit fd02504

Browse files
committed
tons of typos
1 parent 4032f27 commit fd02504

File tree

8 files changed

+530
-521
lines changed

8 files changed

+530
-521
lines changed

doc/pub/week6/html/week6-bs.html

Lines changed: 57 additions & 54 deletions
Large diffs are not rendered by default.

doc/pub/week6/html/week6-reveal.html

Lines changed: 49 additions & 49 deletions
Original file line numberDiff line numberDiff line change
@@ -250,34 +250,34 @@ <h2 id="single-qubit-gates">Single qubit gates </h2>
250250
</section>
251251

252252
<section>
253-
<h2 id="pauli-x-gate">Pauli-\( X \) gate </h2>
253+
<h2 id="pauli-boldsymbol-x-gate">Pauli-\( \boldsymbol{X} \) gate </h2>
254254

255-
<p>The Pauli-\( X \) gate is also known as the <b>NOT</b> gate, which flips the state of the qubit.</p>
255+
<p>The Pauli-\( \boldsymbol{X} \) gate is also known as the <b>NOT</b> gate, which flips the state of the qubit.</p>
256256
<p>&nbsp;<br>
257257
$$
258258
\begin{align*}
259-
X\vert 0\rangle &= \vert 1\rangle, \\
260-
X\vert 1\rangle &= \vert 0\rangle.
259+
\boldsymbol{X}\vert 0\rangle &= \vert 1\rangle, \\
260+
\boldsymbol{X}\vert 1\rangle &= \vert 0\rangle.
261261
\end{align*}
262262
$$
263263
<p>&nbsp;<br>
264264

265-
<p>The Pauli-\( Y \) gate flips the bit and multiplies the phase by $ i $. </p>
265+
<p>The Pauli-\( \boldsymbol{Y} \) gate flips the bit and multiplies the phase by $ i $. </p>
266266
<p>&nbsp;<br>
267267
$$
268268
\begin{align*}
269-
Y\vert 0\rangle &= i\vert 1\rangle, \\
270-
Y\vert 1\rangle &= -i\vert 0\rangle.
269+
\boldsymbol{Y}\vert 0\rangle &= i\vert 1\rangle, \\
270+
\boldsymbol{Y}\vert 1\rangle &= -i\vert 0\rangle.
271271
\end{align*}
272272
$$
273273
<p>&nbsp;<br>
274274

275-
<p>The Pauli-\( Z \) gate multiplies only the phase of \( \vert 1\rangle \) by $ -1 \( .</p>
275+
<p>The Pauli-\( \boldsymbol{Z} \) gate multiplies only the phase of \( \vert 1\rangle \) by $ -1 \( .</p>
276276
<p>&nbsp;<br>
277277
$$
278278
\begin{align*}
279-
Z\vert 0\rangle &= \vert 0\rangle, \\
280-
Z\vert 1\rangle &= -\vert 1\rangle.
279+
\boldsymbol{Z}\vert 0\rangle &= \vert 0\rangle, \\
280+
\boldsymbol{Z}\vert 1\rangle &= -\vert 1\rangle.
281281
\end{align*}
282282
$$
283283
<p>&nbsp;<br>
@@ -289,7 +289,7 @@ <h2 id="hadamard-gate">Hadamard gate </h2>
289289
<p>The Hadamard gate is defined as</p>
290290
<p>&nbsp;<br>
291291
$$
292-
H = \frac{1}{\sqrt{2}} \begin{pmatrix}
292+
\boldsymbol{H} = \frac{1}{\sqrt{2}} \begin{pmatrix}
293293
1 & 1 \\
294294
1 & -1
295295
\end{pmatrix}.
@@ -300,9 +300,9 @@ <h2 id="hadamard-gate">Hadamard gate </h2>
300300
<p>&nbsp;<br>
301301
$$
302302
\begin{align}
303-
H\vert 0\rangle &= \frac{1}{\sqrt{2}} \left( \vert 0\rangle + \vert 1\rangle \right),
303+
\boldsymbol{H}\vert 0\rangle &= \frac{1}{\sqrt{2}} \left( \vert 0\rangle + \vert 1\rangle \right),
304304
\tag{1}\\
305-
H\vert 1\rangle &= \frac{1}{\sqrt{2}} \left( \vert 0\rangle - \vert 1\rangle \right).
305+
\boldsymbol{H}\vert 1\rangle &= \frac{1}{\sqrt{2}} \left( \vert 0\rangle - \vert 1\rangle \right).
306306
\tag{2}
307307
\end{align}
308308
$$
@@ -316,7 +316,7 @@ <h2 id="phase-gates">Phase Gates </h2>
316316
<p>The phase gate is usually denoted as \( S \) and is defined as</p>
317317
<p>&nbsp;<br>
318318
$$
319-
S = \begin{pmatrix}
319+
\boldsymbol{S} = \begin{pmatrix}
320320
1 & 0 \\
321321
0 & i
322322
\end{pmatrix}.
@@ -327,32 +327,32 @@ <h2 id="phase-gates">Phase Gates </h2>
327327
<p>&nbsp;<br>
328328
$$
329329
\begin{align*}
330-
S\vert 0\rangle &= \vert 0\rangle, \\
331-
S\vert 1\rangle &= i\vert 1\rangle.
330+
\boldsymbol{S}\vert 0\rangle &= \vert 0\rangle, \\
331+
\boldsymbol{S}\vert 1\rangle &= i\vert 1\rangle.
332332
\end{align*}
333333
$$
334334
<p>&nbsp;<br>
335335
</section>
336336

337337
<section>
338-
<h2 id="the-inverse-of-the-s-gate">The inverse of the \( S \)-gate </h2>
338+
<h2 id="the-inverse-of-the-boldsymbol-s-gate">The inverse of the \( \boldsymbol{S} \)-gate </h2>
339339

340340
<p>The inverse</p>
341341
<p>&nbsp;<br>
342342
$$
343-
S^\dagger = \begin{pmatrix}
343+
\boldsymbol{S}^\dagger = \begin{pmatrix}
344344
1 & 0 \\
345345
0 & -i
346346
\end{pmatrix}
347347
$$
348348
<p>&nbsp;<br>
349349

350-
<p>is known as the $ S^\dagger$ gate which applies an \( \imath \) phase shift to \( \vert 1\rangle \).</p>
350+
<p>is known as the $ \boldsymbol{S}^\dagger$ gate which applies an \( \imath \) phase shift to \( \vert 1\rangle \).</p>
351351
<p>&nbsp;<br>
352352
$$
353353
\begin{align*}
354-
S^\dagger\vert 0\rangle &= \vert 0\rangle, \\
355-
S^\dagger\vert 1\rangle &= -i\vert 1\rangle.
354+
\boldsymbol{S}^\dagger\vert 0\rangle &= \vert 0\rangle, \\
355+
\boldsymbol{S}^\dagger\vert 1\rangle &= -i\vert 1\rangle.
356356
\end{align*}
357357
$$
358358
<p>&nbsp;<br>
@@ -415,12 +415,12 @@ <h2 id="the-swap-gate">The SWAP gate </h2>
415415
<section>
416416
<h2 id="pauli-strings">Pauli Strings </h2>
417417

418-
<p>A Pauli string, such as $ XIYZ $ is a tensor product of Pauli matrices acting on different qubits.
419-
The Pauli string $ XIYZ $ is defined as (from qubit one to qubit four, from left to right)
418+
<p>A Pauli string, such as \( \boldsymbol{XIYZ} \) is a tensor product of Pauli matrices acting on different qubits.
419+
The Pauli string \( \boldsymbol{XIYZ} \) is defined as (from qubit one to qubit four, from left to right)
420420
</p>
421421
<p>&nbsp;<br>
422422
$$
423-
XIYZ \equiv X_0 \otimes I_1 \otimes Y_2 \otimes Z_3.
423+
\boldsymbol{XIYZ} \equiv \boldsymbol{X}_0 \otimes \boldsymbol{I}_1 \otimes \boldsymbol{Y}_2 \otimes \boldsymbol{Z}_3.
424424
$$
425425
<p>&nbsp;<br>
426426

@@ -730,33 +730,33 @@ <h2 id="expectation-values">Expectation values </h2>
730730
by post-processing measurements of quantum circuits in different
731731
basis sets. To rotate bases, one uses the basis rotator \( R_\sigma \) which is
732732
defined for each Pauli gate \( \sigma \) to be (using the Hadamard rotation \( H \) and Phase rotation \( S \))
733-
for a Pauli-\( X \) matrix
733+
for a Pauli-\( \boldsymbol{X} \) matrix
734734
</p>
735735
<p>&nbsp;<br>
736736
$$
737-
X=R_{\sigma}ZR_{\sigma} = HZH
737+
\boldsymbol{X}=R_{\sigma}\boldsymbol{Z}R_{\sigma} = HZH
738738
$$
739739
<p>&nbsp;<br>
740740

741-
<p>for a Pauli-\( Y \) matrix</p>
741+
<p>for a Pauli-\( \boldsymbol{Y} \) matrix</p>
742742
<p>&nbsp;<br>
743743
$$
744-
Y=R_{\sigma}ZR_{\sigma}=HS^{\dagger}ZHS,
744+
\boldsymbol{Y}=R_{\sigma}\boldsymbol{Z}R_{\sigma}=\boldsymbol{HS}^{\dagger}\boldsymbol{ZHS},
745745
$$
746746
<p>&nbsp;<br>
747747

748748
<p>and</p>
749749
<p>&nbsp;<br>
750750
$$
751-
Z=R_{\sigma}ZR_{\sigma}=\boldsymbol{I}Z\boldsymbol{I}=Z.
751+
\boldsymbol{Z}=R_{\sigma}ZR_{\sigma}=\boldsymbol{I}\boldsymbol{Z}\boldsymbol{I}=\boldsymbol{Z}.
752752
$$
753753
<p>&nbsp;<br>
754754
</section>
755755

756756
<section>
757757
<h2 id="measurements-of-eigenvalues-of-the-pauli-operators">Measurements of eigenvalues of the Pauli operators </h2>
758758

759-
<p>We can show that these rotations allow us to measure the eigenvalues of the Pauli operators. The eigenvectors of the Pauli \( X \) gate are</p>
759+
<p>We can show that these rotations allow us to measure the eigenvalues of the Pauli operators. The eigenvectors of the Pauli \( \boldsymbol{X} \) gate are</p>
760760
<p>&nbsp;<br>
761761
$$
762762
\vert\pm\rangle = \frac{\vert 0\rangle \pm \vert 1\rangle}{\sqrt{2}},
@@ -768,14 +768,14 @@ <h2 id="measurements-of-eigenvalues-of-the-pauli-operators">Measurements of eige
768768
</p>
769769
<p>&nbsp;<br>
770770
$$
771-
H\vert +\rangle = +1\vert 0\rangle,
771+
\boldsymbol{H}\vert +\rangle = +1\vert 0\rangle,
772772
$$
773773
<p>&nbsp;<br>
774774

775775
<p>and</p>
776776
<p>&nbsp;<br>
777777
$$
778-
H\vert -\rangle = -1\vert 1\rangle.
778+
\boldsymbol{H}\vert -\rangle = -1\vert 1\rangle.
779779
$$
780780
<p>&nbsp;<br>
781781
</section>
@@ -790,7 +790,7 @@ <h2 id="single-qubit-states">Single-qubit states </h2>
790790
$$
791791
<p>&nbsp;<br>
792792

793-
<p>We then have the following expectation value for the Pauli \( X \) operator</p>
793+
<p>We then have the following expectation value for the Pauli \( \boldsymbol{X} \) operator</p>
794794
<p>&nbsp;<br>
795795
$$
796796
\langle \vert X\vert \rangle = \langle \psi\vert X \vert \psi\rangle = |\alpha|^2 - |\beta|^2.
@@ -809,10 +809,10 @@ <h2 id="single-qubit-states">Single-qubit states </h2>
809809
<h2 id="interpretations">Interpretations </h2>
810810

811811
<p>This tells us that we are able to estimate \( |\alpha|^2 \) and
812-
\( |\beta|^2 \) (and hence the expectation value of the Pauli \( X \)
812+
\( |\beta|^2 \) (and hence the expectation value of the Pauli \( \boldsymbol{X} \)
813813
operator) by using a rotation and measure the
814814
resulting state in the computational basis. We can show this for the
815-
Pauli \( Z \) and Pauli \( Y \) similarly.
815+
Pauli \( \boldsymbol{Z} \) and Pauli \( \boldsymbol{Y} \) similarly.
816816
</p>
817817
</section>
818818

@@ -822,11 +822,11 @@ <h2 id="reminder-on-rotations">Reminder on rotations </h2>
822822
<p>Note the following identity of the basis rotator</p>
823823
<p>&nbsp;<br>
824824
$$
825-
R^\dagger_\sigma Z R_\sigma = \sigma,
825+
R^\dagger_\sigma \boldsymbol{Z} R_\sigma = \sigma,
826826
$$
827827
<p>&nbsp;<br>
828828

829-
<p>which follows from the fact that \( HZH=X \) and \( SXS^\dagger=Y \).</p>
829+
<p>which follows from the fact that \( \boldsymbol{HZH}=\boldsymbol{X} \) and \( \boldsymbol{SXS}^\dagger=\boldsymbol{Y} \).</p>
830830
</section>
831831

832832
<section>
@@ -994,7 +994,7 @@ <h2 id="vqe-and-efficient-computations-of-gradients">VQE and efficient computati
994994
</p>
995995

996996
<p>We start with a simple \( 2\times 2 \) Hamiltonian matrix expressed in
997-
terms of Pauli \( X \) and \( Z \) matrices, as discussed in the project text.
997+
terms of Pauli \( \boldsymbol{X} \) and \( \boldsymbol{Z} \) matrices, as discussed in the project text.
998998
</p>
999999
</section>
10001000

@@ -1312,8 +1312,8 @@ <h2 id="computational-basis">Computational basis </h2>
13121312
<p>The above equations require that we can make measurements in the chosen basis sets.</p>
13131313

13141314
<p>However, this may not be possible. The difficulty comes from the fact that one may have the possibility
1315-
to measure only in the \( Z \)-basis. To solve this difficulty we still do
1316-
a \( Z \)-basis measurement, but, before that, we apply specific operators
1315+
to measure only in the \( \boldsymbol{Z} \)-basis. To solve this difficulty we still do
1316+
a \( \boldsymbol{Z} \)-basis measurement, but, before that, we apply specific operators
13171317
to the \( \left| \psi \right\rangle \) state.
13181318
</p>
13191319
</section>
@@ -1338,7 +1338,7 @@ <h2 id="unitary-transformation-of-boldsymbol-x">Unitary transformation of \( \bo
13381338
$$
13391339
<p>&nbsp;<br>
13401340

1341-
<p>The Hadamard gate/matrix is a unitary matrix with the property that \( \boldsymbol{H}^2=\boldsymbol{I} \).</p>
1341+
<p>The Hadamard gate/matrix is a unitary matrix with the property that \( H^2=\boldsymbol{I} \).</p>
13421342
</section>
13431343

13441344
<section>
@@ -1362,7 +1362,7 @@ <h2 id="generalizing">Generalizing </h2>
13621362
<p>where \( \mathcal{P} \) represents some combination of the Pauli matrices and
13631363
the identity matrix, \( \boldsymbol{U} \) is a unitary matrix and \( \boldsymbol{M} \)
13641364
represents the gate/matrix which performs the measurements, often
1365-
represented by a Pauli \( \boldsymbol{Z} \) gate/matrix.
1365+
represented by a Pauli-\( \boldsymbol{Z} \) gate/matrix.
13661366
</p>
13671367
</section>
13681368

@@ -1616,7 +1616,7 @@ <h2 id="rotations-again-and-again">Rotations again and again </h2>
16161616
<p>&nbsp;<br>
16171617

16181618
<p>with \( \boldsymbol{sigma}_i \), with \( \boldsymbol{\sigma}_i \) being any of the Pauli
1619-
matrices \( X \), \( Y \) and \( Z \). The latter can be generalized to other
1619+
matrices \( \boldsymbol{X} \), \( \boldsymbol{Y} \) and \( \boldsymbol{Z} \). The latter can be generalized to other
16201620
unitary matrices as well.
16211621
The derivative with respect to \( \phi \) gives
16221622
</p>
@@ -1642,7 +1642,7 @@ <h2 id="bloch-sphere-math">Bloch sphere math </h2>
16421642

16431643
<p>&nbsp;<br>
16441644
$$
1645-
\langle \psi \vert \hat{H}\vert \psi \rangle = \langle 0 \vert R_i(\phi)^{\dagger} \hat{H}R_i(\phi)\vert 0\rangle.
1645+
\langle \psi \vert \mathcal{H}\vert \psi \rangle = \langle 0 \vert R_i(\phi)^{\dagger} \mathcal{H}R_i(\phi)\vert 0\rangle.
16461646
$$
16471647
<p>&nbsp;<br>
16481648
</section>
@@ -1680,15 +1680,15 @@ <h2 id="rewriting">Rewriting </h2>
16801680
<h2 id="final-manipulations">Final manipulations </h2>
16811681

16821682
<p>If we identify these operators as \( \hat{A}=\boldsymbol{I} \), with
1683-
\( \boldsymbol{I} \) being the unit operator, \( \hat{B}=\hat{H} \) our Hamiltonian,
1683+
\( \boldsymbol{I} \) being the unit operator, \( \hat{B}=\mathcal{H} \) our Hamiltonian,
16841684
and \( \hat{C}=-\imath \boldsymbol{\sigma}_i/2 \), we obtain the following
16851685
expression for the expectation value of the derivative (excluding the hermitian conjugate)
16861686
</p>
16871687

16881688
<p>&nbsp;<br>
16891689
$$
1690-
\langle \psi \vert \boldsymbol{I}^{\dagger}\hat{H}(-\frac{\imath}{2}\boldsymbol{\sigma}_i\vert \psi \rangle = \frac{1}{2}\left[
1691-
\langle \psi \vert (\boldsymbol{I}-\frac{\imath}{2} \boldsymbol{\sigma}_i)^{\dagger}\hat{H}(\boldsymbol{I}-\frac{\imath}{2} \boldsymbol{\sigma}_i)\vert \psi \rangle-\langle \psi \vert (\boldsymbol{I}+\frac{\imath}{2} \boldsymbol{\sigma}_i)^{\dagger}\hat{H}(\boldsymbol{I}+\frac{\imath}{2} \boldsymbol{\sigma}_i)\vert \psi \rangle\right].
1690+
\langle \psi \vert \boldsymbol{I}^{\dagger}\mathcal{H}(-\frac{\imath}{2}\boldsymbol{\sigma}_i\vert \psi \rangle = \frac{1}{2}\left[
1691+
\langle \psi \vert (\boldsymbol{I}-\frac{\imath}{2} \boldsymbol{\sigma}_i)^{\dagger}\mathcal{H}(\boldsymbol{I}-\frac{\imath}{2} \boldsymbol{\sigma}_i)\vert \psi \rangle-\langle \psi \vert (\boldsymbol{I}+\frac{\imath}{2} \boldsymbol{\sigma}_i)^{\dagger}\mathcal{H}(\boldsymbol{I}+\frac{\imath}{2} \boldsymbol{\sigma}_i)\vert \psi \rangle\right].
16921692
$$
16931693
<p>&nbsp;<br>
16941694
</section>
@@ -1717,8 +1717,8 @@ <h2 id="final-expression">Final expression </h2>
17171717
<p>This means that we can write</p>
17181718
<p>&nbsp;<br>
17191719
$$
1720-
\langle \psi \vert \boldsymbol{I}^{\dagger}\hat{H}(-\frac{\imath}{2}\boldsymbol{\sigma}_i\vert \psi \rangle = \frac{1}{2}\left[
1721-
\langle \psi \vert R_i(\frac{\pi}{2})^{\dagger}\hat{H}R_i(\frac{\pi}{2})\vert \psi \rangle-\langle \psi \vert R_i(-\frac{\pi}{2})^{\dagger}\hat{H}R_i(-\frac{\pi}{2})^{\dagger}\vert \psi \rangle\right]=\frac{1}{2}(\langle\hat{H}(\phi+\frac{\pi}{2})\rangle-\langle\hat{H}(\phi-\frac{\pi}{2})\rangle).
1720+
\langle \psi \vert \boldsymbol{I}^{\dagger}\mathcal{H}(-\frac{\imath}{2}\boldsymbol{\sigma}_i\vert \psi \rangle = \frac{1}{2}\left[
1721+
\langle \psi \vert R_i(\frac{\pi}{2})^{\dagger}\mathcal{H}R_i(\frac{\pi}{2})\vert \psi \rangle-\langle \psi \vert R_i(-\frac{\pi}{2})^{\dagger}\mathcal{H}R_i(-\frac{\pi}{2})^{\dagger}\vert \psi \rangle\right]=\frac{1}{2}(\langle\mathcal{H}(\phi+\frac{\pi}{2})\rangle-\langle\mathcal{H}(\phi-\frac{\pi}{2})\rangle).
17221722
$$
17231723
<p>&nbsp;<br>
17241724
</section>

0 commit comments

Comments
 (0)