@@ -250,34 +250,34 @@ <h2 id="single-qubit-gates">Single qubit gates </h2>
250250</ section >
251251
252252< section >
253- < h2 id ="pauli-x-gate "> Pauli-\( X \) gate </ h2 >
253+ < h2 id ="pauli-boldsymbol- x-gate "> Pauli-\( \boldsymbol{X} \) gate </ h2 >
254254
255- < p > The Pauli-\( X \) gate is also known as the < b > NOT</ b > gate, which flips the state of the qubit.</ p >
255+ < p > The Pauli-\( \boldsymbol{X} \) gate is also known as the < b > NOT</ b > gate, which flips the state of the qubit.</ p >
256256< p > < br >
257257$$
258258\begin{align*}
259- X \vert 0\rangle &= \vert 1\rangle, \\
260- X \vert 1\rangle &= \vert 0\rangle.
259+ \boldsymbol{X} \vert 0\rangle &= \vert 1\rangle, \\
260+ \boldsymbol{X} \vert 1\rangle &= \vert 0\rangle.
261261\end{align*}
262262$$
263263< p > < br >
264264
265- < p > The Pauli-\( Y \) gate flips the bit and multiplies the phase by $ i $. </ p >
265+ < p > The Pauli-\( \boldsymbol{Y} \) gate flips the bit and multiplies the phase by $ i $. </ p >
266266< p > < br >
267267$$
268268\begin{align*}
269- Y \vert 0\rangle &= i\vert 1\rangle, \\
270- Y \vert 1\rangle &= -i\vert 0\rangle.
269+ \boldsymbol{Y} \vert 0\rangle &= i\vert 1\rangle, \\
270+ \boldsymbol{Y} \vert 1\rangle &= -i\vert 0\rangle.
271271\end{align*}
272272$$
273273< p > < br >
274274
275- < p > The Pauli-\( Z \) gate multiplies only the phase of \( \vert 1\rangle \) by $ -1 \( .</ p >
275+ < p > The Pauli-\( \boldsymbol{Z} \) gate multiplies only the phase of \( \vert 1\rangle \) by $ -1 \( .</ p >
276276< p > < br >
277277$$
278278\begin{align*}
279- Z \vert 0\rangle &= \vert 0\rangle, \\
280- Z \vert 1\rangle &= -\vert 1\rangle.
279+ \boldsymbol{Z} \vert 0\rangle &= \vert 0\rangle, \\
280+ \boldsymbol{Z} \vert 1\rangle &= -\vert 1\rangle.
281281\end{align*}
282282$$
283283< p > < br >
@@ -289,7 +289,7 @@ <h2 id="hadamard-gate">Hadamard gate </h2>
289289< p > The Hadamard gate is defined as</ p >
290290< p > < br >
291291$$
292- H = \frac{1}{\sqrt{2}} \begin{pmatrix}
292+ \boldsymbol{H} = \frac{1}{\sqrt{2}} \begin{pmatrix}
293293 1 & 1 \\
294294 1 & -1
295295 \end{pmatrix}.
@@ -300,9 +300,9 @@ <h2 id="hadamard-gate">Hadamard gate </h2>
300300< p > < br >
301301$$
302302\begin{align}
303- H \vert 0\rangle &= \frac{1}{\sqrt{2}} \left( \vert 0\rangle + \vert 1\rangle \right),
303+ \boldsymbol{H} \vert 0\rangle &= \frac{1}{\sqrt{2}} \left( \vert 0\rangle + \vert 1\rangle \right),
304304\tag{1}\\
305- H \vert 1\rangle &= \frac{1}{\sqrt{2}} \left( \vert 0\rangle - \vert 1\rangle \right).
305+ \boldsymbol{H} \vert 1\rangle &= \frac{1}{\sqrt{2}} \left( \vert 0\rangle - \vert 1\rangle \right).
306306\tag{2}
307307\end{align}
308308$$
@@ -316,7 +316,7 @@ <h2 id="phase-gates">Phase Gates </h2>
316316< p > The phase gate is usually denoted as \( S \) and is defined as</ p >
317317< p > < br >
318318$$
319- S = \begin{pmatrix}
319+ \boldsymbol{S} = \begin{pmatrix}
320320 1 & 0 \\
321321 0 & i
322322 \end{pmatrix}.
@@ -327,32 +327,32 @@ <h2 id="phase-gates">Phase Gates </h2>
327327< p > < br >
328328$$
329329\begin{align*}
330- S \vert 0\rangle &= \vert 0\rangle, \\
331- S \vert 1\rangle &= i\vert 1\rangle.
330+ \boldsymbol{S} \vert 0\rangle &= \vert 0\rangle, \\
331+ \boldsymbol{S} \vert 1\rangle &= i\vert 1\rangle.
332332\end{align*}
333333$$
334334< p > < br >
335335</ section >
336336
337337< section >
338- < h2 id ="the-inverse-of-the-s-gate "> The inverse of the \( S \)-gate </ h2 >
338+ < h2 id ="the-inverse-of-the-boldsymbol- s-gate "> The inverse of the \( \boldsymbol{S} \)-gate </ h2 >
339339
340340< p > The inverse</ p >
341341< p > < br >
342342$$
343- S ^\dagger = \begin{pmatrix}
343+ \boldsymbol{S} ^\dagger = \begin{pmatrix}
344344 1 & 0 \\
345345 0 & -i
346346 \end{pmatrix}
347347$$
348348< p > < br >
349349
350- < p > is known as the $ S ^\dagger$ gate which applies an \( \imath \) phase shift to \( \vert 1\rangle \).</ p >
350+ < p > is known as the $ \boldsymbol{S} ^\dagger$ gate which applies an \( \imath \) phase shift to \( \vert 1\rangle \).</ p >
351351< p > < br >
352352$$
353353\begin{align*}
354- S ^\dagger\vert 0\rangle &= \vert 0\rangle, \\
355- S ^\dagger\vert 1\rangle &= -i\vert 1\rangle.
354+ \boldsymbol{S} ^\dagger\vert 0\rangle &= \vert 0\rangle, \\
355+ \boldsymbol{S} ^\dagger\vert 1\rangle &= -i\vert 1\rangle.
356356\end{align*}
357357$$
358358< p > < br >
@@ -415,12 +415,12 @@ <h2 id="the-swap-gate">The SWAP gate </h2>
415415< section >
416416< h2 id ="pauli-strings "> Pauli Strings </ h2 >
417417
418- < p > A Pauli string, such as $ XIYZ $ is a tensor product of Pauli matrices acting on different qubits.
419- The Pauli string $ XIYZ $ is defined as (from qubit one to qubit four, from left to right)
418+ < p > A Pauli string, such as \( \boldsymbol{ XIYZ} \) is a tensor product of Pauli matrices acting on different qubits.
419+ The Pauli string \( \boldsymbol{ XIYZ} \) is defined as (from qubit one to qubit four, from left to right)
420420</ p >
421421< p > < br >
422422$$
423- XIYZ \equiv X_0 \otimes I_1 \otimes Y_2 \otimes Z_3 .
423+ \boldsymbol{ XIYZ} \equiv \boldsymbol{X}_0 \otimes \boldsymbol{I}_1 \otimes \boldsymbol{Y}_2 \otimes \boldsymbol{Z}_3 .
424424$$
425425< p > < br >
426426
@@ -730,33 +730,33 @@ <h2 id="expectation-values">Expectation values </h2>
730730by post-processing measurements of quantum circuits in different
731731basis sets. To rotate bases, one uses the basis rotator \( R_\sigma \) which is
732732defined for each Pauli gate \( \sigma \) to be (using the Hadamard rotation \( H \) and Phase rotation \( S \))
733- for a Pauli-\( X \) matrix
733+ for a Pauli-\( \boldsymbol{X} \) matrix
734734</ p >
735735< p > < br >
736736$$
737- X =R_{\sigma}ZR_ {\sigma} = HZH
737+ \boldsymbol{X} =R_{\sigma}\boldsymbol{Z}R_ {\sigma} = HZH
738738$$
739739< p > < br >
740740
741- < p > for a Pauli-\( Y \) matrix</ p >
741+ < p > for a Pauli-\( \boldsymbol{Y} \) matrix</ p >
742742< p > < br >
743743$$
744- Y =R_{\sigma}ZR_{ \sigma}=HS ^{\dagger}ZHS,
744+ \boldsymbol{Y} =R_{\sigma}\boldsymbol{Z}R_{ \sigma}=\boldsymbol{HS} ^{\dagger}\boldsymbol{ ZHS} ,
745745$$
746746< p > < br >
747747
748748< p > and</ p >
749749< p > < br >
750750$$
751- Z =R_{\sigma}ZR_{\sigma}=\boldsymbol{I}Z \boldsymbol{I}=Z .
751+ \boldsymbol{Z} =R_{\sigma}ZR_{\sigma}=\boldsymbol{I}\boldsymbol{Z} \boldsymbol{I}=\boldsymbol{Z} .
752752$$
753753< p > < br >
754754</ section >
755755
756756< section >
757757< h2 id ="measurements-of-eigenvalues-of-the-pauli-operators "> Measurements of eigenvalues of the Pauli operators </ h2 >
758758
759- < p > We can show that these rotations allow us to measure the eigenvalues of the Pauli operators. The eigenvectors of the Pauli \( X \) gate are</ p >
759+ < p > We can show that these rotations allow us to measure the eigenvalues of the Pauli operators. The eigenvectors of the Pauli \( \boldsymbol{X} \) gate are</ p >
760760< p > < br >
761761$$
762762\vert\pm\rangle = \frac{\vert 0\rangle \pm \vert 1\rangle}{\sqrt{2}},
@@ -768,14 +768,14 @@ <h2 id="measurements-of-eigenvalues-of-the-pauli-operators">Measurements of eige
768768</ p >
769769< p > < br >
770770$$
771- H \vert +\rangle = +1\vert 0\rangle,
771+ \boldsymbol{H} \vert +\rangle = +1\vert 0\rangle,
772772$$
773773< p > < br >
774774
775775< p > and</ p >
776776< p > < br >
777777$$
778- H \vert -\rangle = -1\vert 1\rangle.
778+ \boldsymbol{H} \vert -\rangle = -1\vert 1\rangle.
779779$$
780780< p > < br >
781781</ section >
@@ -790,7 +790,7 @@ <h2 id="single-qubit-states">Single-qubit states </h2>
790790$$
791791< p > < br >
792792
793- < p > We then have the following expectation value for the Pauli \( X \) operator</ p >
793+ < p > We then have the following expectation value for the Pauli \( \boldsymbol{X} \) operator</ p >
794794< p > < br >
795795$$
796796\langle \vert X\vert \rangle = \langle \psi\vert X \vert \psi\rangle = |\alpha|^2 - |\beta|^2.
@@ -809,10 +809,10 @@ <h2 id="single-qubit-states">Single-qubit states </h2>
809809< h2 id ="interpretations "> Interpretations </ h2 >
810810
811811< p > This tells us that we are able to estimate \( |\alpha|^2 \) and
812- \( |\beta|^2 \) (and hence the expectation value of the Pauli \( X \)
812+ \( |\beta|^2 \) (and hence the expectation value of the Pauli \( \boldsymbol{X} \)
813813operator) by using a rotation and measure the
814814resulting state in the computational basis. We can show this for the
815- Pauli \( Z \) and Pauli \( Y \) similarly.
815+ Pauli \( \boldsymbol{Z} \) and Pauli \( \boldsymbol{Y} \) similarly.
816816</ p >
817817</ section >
818818
@@ -822,11 +822,11 @@ <h2 id="reminder-on-rotations">Reminder on rotations </h2>
822822< p > Note the following identity of the basis rotator</ p >
823823< p > < br >
824824$$
825- R^\dagger_\sigma Z R_\sigma = \sigma,
825+ R^\dagger_\sigma \boldsymbol{Z} R_\sigma = \sigma,
826826$$
827827< p > < br >
828828
829- < p > which follows from the fact that \( HZH=X \) and \( SXS^\dagger=Y \).</ p >
829+ < p > which follows from the fact that \( \boldsymbol{ HZH}=\boldsymbol{X} \) and \( \boldsymbol{ SXS} ^\dagger=\boldsymbol{Y} \).</ p >
830830</ section >
831831
832832< section >
@@ -994,7 +994,7 @@ <h2 id="vqe-and-efficient-computations-of-gradients">VQE and efficient computati
994994</ p >
995995
996996< p > We start with a simple \( 2\times 2 \) Hamiltonian matrix expressed in
997- terms of Pauli \( X \) and \( Z \) matrices, as discussed in the project text.
997+ terms of Pauli \( \boldsymbol{X} \) and \( \boldsymbol{Z} \) matrices, as discussed in the project text.
998998</ p >
999999</ section >
10001000
@@ -1312,8 +1312,8 @@ <h2 id="computational-basis">Computational basis </h2>
13121312< p > The above equations require that we can make measurements in the chosen basis sets.</ p >
13131313
13141314< p > However, this may not be possible. The difficulty comes from the fact that one may have the possibility
1315- to measure only in the \( Z \)-basis. To solve this difficulty we still do
1316- a \( Z \)-basis measurement, but, before that, we apply specific operators
1315+ to measure only in the \( \boldsymbol{Z} \)-basis. To solve this difficulty we still do
1316+ a \( \boldsymbol{Z} \)-basis measurement, but, before that, we apply specific operators
13171317to the \( \left| \psi \right\rangle \) state.
13181318</ p >
13191319</ section >
@@ -1338,7 +1338,7 @@ <h2 id="unitary-transformation-of-boldsymbol-x">Unitary transformation of \( \bo
13381338$$
13391339< p > < br >
13401340
1341- < p > The Hadamard gate/matrix is a unitary matrix with the property that \( \boldsymbol{H} ^2=\boldsymbol{I} \).</ p >
1341+ < p > The Hadamard gate/matrix is a unitary matrix with the property that \( H ^2=\boldsymbol{I} \).</ p >
13421342</ section >
13431343
13441344< section >
@@ -1362,7 +1362,7 @@ <h2 id="generalizing">Generalizing </h2>
13621362< p > where \( \mathcal{P} \) represents some combination of the Pauli matrices and
13631363the identity matrix, \( \boldsymbol{U} \) is a unitary matrix and \( \boldsymbol{M} \)
13641364represents the gate/matrix which performs the measurements, often
1365- represented by a Pauli \( \boldsymbol{Z} \) gate/matrix.
1365+ represented by a Pauli- \( \boldsymbol{Z} \) gate/matrix.
13661366</ p >
13671367</ section >
13681368
@@ -1616,7 +1616,7 @@ <h2 id="rotations-again-and-again">Rotations again and again </h2>
16161616< p > < br >
16171617
16181618< p > with \( \boldsymbol{sigma}_i \), with \( \boldsymbol{\sigma}_i \) being any of the Pauli
1619- matrices \( X \), \( Y \) and \( Z \). The latter can be generalized to other
1619+ matrices \( \boldsymbol{X} \), \( \boldsymbol{Y} \) and \( \boldsymbol{Z} \). The latter can be generalized to other
16201620unitary matrices as well.
16211621The derivative with respect to \( \phi \) gives
16221622</ p >
@@ -1642,7 +1642,7 @@ <h2 id="bloch-sphere-math">Bloch sphere math </h2>
16421642
16431643< p > < br >
16441644$$
1645- \langle \psi \vert \hat {H}\vert \psi \rangle = \langle 0 \vert R_i(\phi)^{\dagger} \hat {H}R_i(\phi)\vert 0\rangle.
1645+ \langle \psi \vert \mathcal {H}\vert \psi \rangle = \langle 0 \vert R_i(\phi)^{\dagger} \mathcal {H}R_i(\phi)\vert 0\rangle.
16461646$$
16471647< p > < br >
16481648</ section >
@@ -1680,15 +1680,15 @@ <h2 id="rewriting">Rewriting </h2>
16801680< h2 id ="final-manipulations "> Final manipulations </ h2 >
16811681
16821682< p > If we identify these operators as \( \hat{A}=\boldsymbol{I} \), with
1683- \( \boldsymbol{I} \) being the unit operator, \( \hat{B}=\hat {H} \) our Hamiltonian,
1683+ \( \boldsymbol{I} \) being the unit operator, \( \hat{B}=\mathcal {H} \) our Hamiltonian,
16841684and \( \hat{C}=-\imath \boldsymbol{\sigma}_i/2 \), we obtain the following
16851685expression for the expectation value of the derivative (excluding the hermitian conjugate)
16861686</ p >
16871687
16881688< p > < br >
16891689$$
1690- \langle \psi \vert \boldsymbol{I}^{\dagger}\hat {H}(-\frac{\imath}{2}\boldsymbol{\sigma}_i\vert \psi \rangle = \frac{1}{2}\left[
1691- \langle \psi \vert (\boldsymbol{I}-\frac{\imath}{2} \boldsymbol{\sigma}_i)^{\dagger}\hat {H}(\boldsymbol{I}-\frac{\imath}{2} \boldsymbol{\sigma}_i)\vert \psi \rangle-\langle \psi \vert (\boldsymbol{I}+\frac{\imath}{2} \boldsymbol{\sigma}_i)^{\dagger}\hat {H}(\boldsymbol{I}+\frac{\imath}{2} \boldsymbol{\sigma}_i)\vert \psi \rangle\right].
1690+ \langle \psi \vert \boldsymbol{I}^{\dagger}\mathcal {H}(-\frac{\imath}{2}\boldsymbol{\sigma}_i\vert \psi \rangle = \frac{1}{2}\left[
1691+ \langle \psi \vert (\boldsymbol{I}-\frac{\imath}{2} \boldsymbol{\sigma}_i)^{\dagger}\mathcal {H}(\boldsymbol{I}-\frac{\imath}{2} \boldsymbol{\sigma}_i)\vert \psi \rangle-\langle \psi \vert (\boldsymbol{I}+\frac{\imath}{2} \boldsymbol{\sigma}_i)^{\dagger}\mathcal {H}(\boldsymbol{I}+\frac{\imath}{2} \boldsymbol{\sigma}_i)\vert \psi \rangle\right].
16921692$$
16931693< p > < br >
16941694</ section >
@@ -1717,8 +1717,8 @@ <h2 id="final-expression">Final expression </h2>
17171717< p > This means that we can write</ p >
17181718< p > < br >
17191719$$
1720- \langle \psi \vert \boldsymbol{I}^{\dagger}\hat {H}(-\frac{\imath}{2}\boldsymbol{\sigma}_i\vert \psi \rangle = \frac{1}{2}\left[
1721- \langle \psi \vert R_i(\frac{\pi}{2})^{\dagger}\hat {H}R_i(\frac{\pi}{2})\vert \psi \rangle-\langle \psi \vert R_i(-\frac{\pi}{2})^{\dagger}\hat {H}R_i(-\frac{\pi}{2})^{\dagger}\vert \psi \rangle\right]=\frac{1}{2}(\langle\hat {H}(\phi+\frac{\pi}{2})\rangle-\langle\hat {H}(\phi-\frac{\pi}{2})\rangle).
1720+ \langle \psi \vert \boldsymbol{I}^{\dagger}\mathcal {H}(-\frac{\imath}{2}\boldsymbol{\sigma}_i\vert \psi \rangle = \frac{1}{2}\left[
1721+ \langle \psi \vert R_i(\frac{\pi}{2})^{\dagger}\mathcal {H}R_i(\frac{\pi}{2})\vert \psi \rangle-\langle \psi \vert R_i(-\frac{\pi}{2})^{\dagger}\mathcal {H}R_i(-\frac{\pi}{2})^{\dagger}\vert \psi \rangle\right]=\frac{1}{2}(\langle\mathcal {H}(\phi+\frac{\pi}{2})\rangle-\langle\mathcal {H}(\phi-\frac{\pi}{2})\rangle).
17221722$$
17231723< p > < br >
17241724</ section >
0 commit comments