|
| 1 | +\documentclass{beamer} |
| 2 | +\usepackage{graphicx} |
| 3 | +\usepackage{amsmath, amssymb} |
| 4 | +\usepackage{qcircuit} % For quantum circuits |
| 5 | +\usepackage{tikz} |
| 6 | +\usetikzlibrary{quantikz} % Quantum circuit diagrams |
| 7 | + |
| 8 | +\title{Quantum Phase Estimation} |
| 9 | +\author{Morten HJ} |
| 10 | +\date{Modified slides from 2009} |
| 11 | + |
| 12 | +\begin{document} |
| 13 | + |
| 14 | +\begin{frame} |
| 15 | + \titlepage |
| 16 | +\end{frame} |
| 17 | + |
| 18 | +% Slide: Introduction |
| 19 | +\begin{frame}{Introduction to Quantum Phase Estimation (QPE)} |
| 20 | + \begin{itemize} |
| 21 | + \item QPE is a fundamental quantum algorithm used to estimate the phase $\phi$ in eigenvalue equations of unitary operators. |
| 22 | + \item Given a unitary operator $U$ and an eigenvector $| \psi \rangle$ such that: |
| 23 | + \[ |
| 24 | + U | \psi \rangle = e^{2\pi i \phi} | \psi \rangle |
| 25 | + \] |
| 26 | + the goal of QPE is to estimate $\phi$. |
| 27 | + \item Applications: |
| 28 | + \begin{itemize} |
| 29 | + \item Shor's factoring algorithm |
| 30 | + \item Hamiltonian simulation |
| 31 | + \item Quantum chemistry |
| 32 | + \end{itemize} |
| 33 | + \end{itemize} |
| 34 | +\end{frame} |
| 35 | + |
| 36 | +% Slide: Quantum Circuit |
| 37 | +\begin{frame}{Quantum Circuit for QPE} |
| 38 | + \centering |
| 39 | + \begin{quantikz} |
| 40 | + \lstick[wires=1]{$n$ qubits} & \gate{H} & \qwbundle{n} & \ctrl{1} & \qw & \qw & \gate{\text{QFT}^{\dagger}} & \meter{} \\ |
| 41 | + \lstick[wires=1]{1 qubit} & \qw & \qw & \gate{U^{2^j}} & \qw & \qw & \qw & \qw |
| 42 | + \end{quantikz} |
| 43 | + \begin{itemize} |
| 44 | + \item The first register contains $n$ qubits initialized to $|0\rangle$. |
| 45 | + \item Hadamard gates create a superposition state. |
| 46 | + \item Controlled-$U^{2^j}$ operations apply phase shifts. |
| 47 | + \item The inverse Quantum Fourier Transform (QFT) extracts phase information. |
| 48 | + \end{itemize} |
| 49 | +\end{frame} |
| 50 | + |
| 51 | +% Slide: State Evolution |
| 52 | +\begin{frame}{State Evolution in QPE} |
| 53 | + \begin{itemize} |
| 54 | + \item Initial state: |
| 55 | + \[ |
| 56 | + | \psi_0 \rangle = | 0 \rangle^{\otimes n} \otimes | \psi \rangle |
| 57 | + \] |
| 58 | + \item After Hadamard transform: |
| 59 | + \[ |
| 60 | + \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n - 1} | k \rangle | \psi \rangle |
| 61 | + \] |
| 62 | + \item Applying controlled-$U$ gates: |
| 63 | + \[ |
| 64 | + \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n - 1} | k \rangle U^k | \psi \rangle |
| 65 | + \] |
| 66 | + Since $U | \psi \rangle = e^{2\pi i \phi} | \psi \rangle$, this becomes: |
| 67 | + \[ |
| 68 | + \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n - 1} e^{2\pi i k \phi} | k \rangle | \psi \rangle |
| 69 | + \] |
| 70 | + \end{itemize} |
| 71 | +\end{frame} |
| 72 | + |
| 73 | +% Slide: Inverse QFT |
| 74 | +\begin{frame}{Inverse Quantum Fourier Transform (QFT)} |
| 75 | + \begin{itemize} |
| 76 | + \item The QFT maps computational basis states to phase-encoded states: |
| 77 | + \[ |
| 78 | + | k \rangle \to \frac{1}{\sqrt{2^n}} \sum_{j=0}^{2^n - 1} e^{2\pi i k j / 2^n} | j \rangle |
| 79 | + \] |
| 80 | + \item Applying inverse QFT reveals the phase $\phi$ as a binary fraction. |
| 81 | + \end{itemize} |
| 82 | + \centering |
| 83 | + \begin{tikzpicture} |
| 84 | +% \node (qft) at (0,0) {\includegraphics[width=0.7\textwidth]{qft_diagram.png}}; |
| 85 | + \end{tikzpicture} |
| 86 | +\end{frame} |
| 87 | + |
| 88 | +% Slide: Example Computation |
| 89 | +\begin{frame}{Example: Phase of a Simple Unitary} |
| 90 | + \begin{itemize} |
| 91 | + \item Consider $U = \begin{bmatrix} 1 & 0 \\ 0 & e^{2\pi i / 8} \end{bmatrix}$, which has eigenvalues $e^{2\pi i \phi}$ with $\phi = 1/8$. |
| 92 | + \item Using 3 qubits for precision: |
| 93 | + \[ |
| 94 | + \phi = 0.001_2 = \frac{1}{8} |
| 95 | + \] |
| 96 | + \item Measurement should give result $\phi = 0.001$ (binary). |
| 97 | + \end{itemize} |
| 98 | +\end{frame} |
| 99 | + |
| 100 | +% Slide: Applications of QPE |
| 101 | +\begin{frame}{Applications of QPE} |
| 102 | + \begin{itemize} |
| 103 | + \item \textbf{Shor's Algorithm}: Finds the period of a modular function. |
| 104 | + \item \textbf{Hamiltonian Simulation}: Extracts energy eigenvalues for molecular systems. |
| 105 | + \item \textbf{Quantum Metrology}: Improves phase measurement precision. |
| 106 | + \end{itemize} |
| 107 | +\end{frame} |
| 108 | + |
| 109 | +% Slide: Error Analysis |
| 110 | +\begin{frame}{Error Analysis and Precision} |
| 111 | + \begin{itemize} |
| 112 | + \item The precision of QPE depends on the number of qubits used. |
| 113 | + \item Probability of failure decreases exponentially with $n$ qubits. |
| 114 | + \[ |
| 115 | + P_{\text{error}} \approx \frac{1}{2^{2n}} |
| 116 | + \] |
| 117 | + \item Noise and decoherence can impact accuracy, requiring error correction. |
| 118 | + \end{itemize} |
| 119 | +\end{frame} |
| 120 | + |
| 121 | +% Slide: Conclusion |
| 122 | +\begin{frame}{Conclusion} |
| 123 | + \begin{itemize} |
| 124 | + \item QPE is a key quantum subroutine for extracting eigenphases. |
| 125 | + \item Involves controlled unitary operations and inverse QFT. |
| 126 | + \item Essential for algorithms like Shor's and Hamiltonian simulation. |
| 127 | + \end{itemize} |
| 128 | +\end{frame} |
| 129 | + |
| 130 | +\end{document} |
0 commit comments