Skip to content

Commit 6ca9821

Browse files
committed
Create qpe1.tex
1 parent d3d10ec commit 6ca9821

File tree

1 file changed

+130
-0
lines changed

1 file changed

+130
-0
lines changed
Lines changed: 130 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,130 @@
1+
\documentclass{beamer}
2+
\usepackage{graphicx}
3+
\usepackage{amsmath, amssymb}
4+
\usepackage{qcircuit} % For quantum circuits
5+
\usepackage{tikz}
6+
\usetikzlibrary{quantikz} % Quantum circuit diagrams
7+
8+
\title{Quantum Phase Estimation}
9+
\author{Morten HJ}
10+
\date{Modified slides from 2009}
11+
12+
\begin{document}
13+
14+
\begin{frame}
15+
\titlepage
16+
\end{frame}
17+
18+
% Slide: Introduction
19+
\begin{frame}{Introduction to Quantum Phase Estimation (QPE)}
20+
\begin{itemize}
21+
\item QPE is a fundamental quantum algorithm used to estimate the phase $\phi$ in eigenvalue equations of unitary operators.
22+
\item Given a unitary operator $U$ and an eigenvector $| \psi \rangle$ such that:
23+
\[
24+
U | \psi \rangle = e^{2\pi i \phi} | \psi \rangle
25+
\]
26+
the goal of QPE is to estimate $\phi$.
27+
\item Applications:
28+
\begin{itemize}
29+
\item Shor's factoring algorithm
30+
\item Hamiltonian simulation
31+
\item Quantum chemistry
32+
\end{itemize}
33+
\end{itemize}
34+
\end{frame}
35+
36+
% Slide: Quantum Circuit
37+
\begin{frame}{Quantum Circuit for QPE}
38+
\centering
39+
\begin{quantikz}
40+
\lstick[wires=1]{$n$ qubits} & \gate{H} & \qwbundle{n} & \ctrl{1} & \qw & \qw & \gate{\text{QFT}^{\dagger}} & \meter{} \\
41+
\lstick[wires=1]{1 qubit} & \qw & \qw & \gate{U^{2^j}} & \qw & \qw & \qw & \qw
42+
\end{quantikz}
43+
\begin{itemize}
44+
\item The first register contains $n$ qubits initialized to $|0\rangle$.
45+
\item Hadamard gates create a superposition state.
46+
\item Controlled-$U^{2^j}$ operations apply phase shifts.
47+
\item The inverse Quantum Fourier Transform (QFT) extracts phase information.
48+
\end{itemize}
49+
\end{frame}
50+
51+
% Slide: State Evolution
52+
\begin{frame}{State Evolution in QPE}
53+
\begin{itemize}
54+
\item Initial state:
55+
\[
56+
| \psi_0 \rangle = | 0 \rangle^{\otimes n} \otimes | \psi \rangle
57+
\]
58+
\item After Hadamard transform:
59+
\[
60+
\frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n - 1} | k \rangle | \psi \rangle
61+
\]
62+
\item Applying controlled-$U$ gates:
63+
\[
64+
\frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n - 1} | k \rangle U^k | \psi \rangle
65+
\]
66+
Since $U | \psi \rangle = e^{2\pi i \phi} | \psi \rangle$, this becomes:
67+
\[
68+
\frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n - 1} e^{2\pi i k \phi} | k \rangle | \psi \rangle
69+
\]
70+
\end{itemize}
71+
\end{frame}
72+
73+
% Slide: Inverse QFT
74+
\begin{frame}{Inverse Quantum Fourier Transform (QFT)}
75+
\begin{itemize}
76+
\item The QFT maps computational basis states to phase-encoded states:
77+
\[
78+
| k \rangle \to \frac{1}{\sqrt{2^n}} \sum_{j=0}^{2^n - 1} e^{2\pi i k j / 2^n} | j \rangle
79+
\]
80+
\item Applying inverse QFT reveals the phase $\phi$ as a binary fraction.
81+
\end{itemize}
82+
\centering
83+
\begin{tikzpicture}
84+
% \node (qft) at (0,0) {\includegraphics[width=0.7\textwidth]{qft_diagram.png}};
85+
\end{tikzpicture}
86+
\end{frame}
87+
88+
% Slide: Example Computation
89+
\begin{frame}{Example: Phase of a Simple Unitary}
90+
\begin{itemize}
91+
\item Consider $U = \begin{bmatrix} 1 & 0 \\ 0 & e^{2\pi i / 8} \end{bmatrix}$, which has eigenvalues $e^{2\pi i \phi}$ with $\phi = 1/8$.
92+
\item Using 3 qubits for precision:
93+
\[
94+
\phi = 0.001_2 = \frac{1}{8}
95+
\]
96+
\item Measurement should give result $\phi = 0.001$ (binary).
97+
\end{itemize}
98+
\end{frame}
99+
100+
% Slide: Applications of QPE
101+
\begin{frame}{Applications of QPE}
102+
\begin{itemize}
103+
\item \textbf{Shor's Algorithm}: Finds the period of a modular function.
104+
\item \textbf{Hamiltonian Simulation}: Extracts energy eigenvalues for molecular systems.
105+
\item \textbf{Quantum Metrology}: Improves phase measurement precision.
106+
\end{itemize}
107+
\end{frame}
108+
109+
% Slide: Error Analysis
110+
\begin{frame}{Error Analysis and Precision}
111+
\begin{itemize}
112+
\item The precision of QPE depends on the number of qubits used.
113+
\item Probability of failure decreases exponentially with $n$ qubits.
114+
\[
115+
P_{\text{error}} \approx \frac{1}{2^{2n}}
116+
\]
117+
\item Noise and decoherence can impact accuracy, requiring error correction.
118+
\end{itemize}
119+
\end{frame}
120+
121+
% Slide: Conclusion
122+
\begin{frame}{Conclusion}
123+
\begin{itemize}
124+
\item QPE is a key quantum subroutine for extracting eigenphases.
125+
\item Involves controlled unitary operations and inverse QFT.
126+
\item Essential for algorithms like Shor's and Hamiltonian simulation.
127+
\end{itemize}
128+
\end{frame}
129+
130+
\end{document}

0 commit comments

Comments
 (0)