Skip to content

Commit d3d10ec

Browse files
committed
Create qpe.tex
1 parent 5a3a24a commit d3d10ec

File tree

1 file changed

+112
-0
lines changed

1 file changed

+112
-0
lines changed

doc/src/week12/Latexslides/qpe.tex

Lines changed: 112 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,112 @@
1+
\documentclass{beamer}
2+
\usepackage[utf8]{inputenc}
3+
\usepackage{quantikz}
4+
\usepackage{amsmath}
5+
\usepackage{braket}
6+
7+
\title{Quantum Phase Estimation (QPE)}
8+
\author{Morten Hjorth-Jensen}
9+
\date{Slides from 2007}
10+
11+
\begin{document}
12+
13+
% Title Slide
14+
\begin{frame}
15+
\titlepage
16+
\end{frame}
17+
18+
% Outline Slide
19+
\begin{frame}{Outline}
20+
\tableofcontents
21+
\end{frame}
22+
23+
% Introduction Slide
24+
\section{Introduction}
25+
\begin{frame}{What is Quantum Phase Estimation?}
26+
\begin{itemize}
27+
\item Quantum Phase Estimation (QPE) is a fundamental quantum algorithm to estimate the eigenphase $\phi$ of a unitary operator $U$.
28+
\item Given an eigenstate $\ket{\psi}$ such that $U\ket{\psi} = e^{2\pi i \phi}\ket{\psi}$, QPE estimates $\phi$ with high probability.
29+
\item It is a crucial subroutine in algorithms like Shor's and quantum simulations.
30+
\end{itemize}
31+
\end{frame}
32+
33+
% Mathematical Background
34+
\section{Mathematical Background}
35+
\begin{frame}{Mathematical Background}
36+
\begin{itemize}
37+
\item Consider a unitary operator $U$ with eigenstate $\ket{\psi}$:
38+
\[ U\ket{\psi} = e^{2\pi i \phi} \ket{\psi}, \quad \phi \in [0,1). \]
39+
\item Goal: Estimate $\phi$ to $n$ bits of precision.
40+
\item Quantum Fourier Transform (QFT) plays a key role in extracting phase information.
41+
\end{itemize}
42+
\end{frame}
43+
44+
% Circuit Structure
45+
\section{Circuit Structure}
46+
\begin{frame}{Quantum Circuit for QPE}
47+
\begin{figure}
48+
\centering
49+
\begin{quantikz}
50+
\lstick{$\ket{0}^{\otimes n}$} & \qwbundle{n} & \gate[2]{QFT^\dagger} & \meter{} \\
51+
\lstick{$\ket{\psi}$} & \gate{U^{2^0}} & \gate{U^{2^1}} & \qw & \qw
52+
\end{quantikz}
53+
\caption{Quantum Phase Estimation Circuit with $n$ qubits.}
54+
\end{figure}
55+
\end{frame}
56+
57+
% Derivation of the Algorithm
58+
\section{Derivation of the Algorithm}
59+
\begin{frame}{Step 1: Initialization}
60+
\begin{itemize}
61+
\item The system starts in $\ket{0}^{\otimes n} \otimes \ket{\psi}$.
62+
\item Apply Hadamard gates to the first $n$ qubits:
63+
\[ \frac{1}{2^{n/2}} \sum_{k=0}^{2^n -1} \ket{k} \otimes \ket{\psi}. \]
64+
\end{itemize}
65+
\end{frame}
66+
67+
\begin{frame}{Step 2: Controlled Unitary Operations}
68+
\begin{itemize}
69+
\item Apply controlled-$U^{2^j}$ operations to create phase kickbacks:
70+
\[ \frac{1}{2^{n/2}} \sum_{k=0}^{2^n -1} \ket{k} \otimes U^k\ket{\psi}. \]
71+
\item For eigenstate $\ket{\psi}$ with eigenvalue $e^{2\pi i \phi}$:
72+
\[ U^k\ket{\psi} = e^{2\pi i \phi k} \ket{\psi}. \]
73+
\end{itemize}
74+
\end{frame}
75+
76+
\begin{frame}{Step 3: Quantum Fourier Transform (QFT)}
77+
\begin{itemize}
78+
\item QFT on the first $n$ qubits transforms the state:
79+
\[ \frac{1}{2^{n/2}} \sum_{k=0}^{2^n -1} e^{2\pi i \phi k} \ket{k}. \]
80+
\item After QFT, we measure the most probable state representing $\phi$.
81+
\end{itemize}
82+
\end{frame}
83+
84+
% Applications
85+
\section{Applications}
86+
\begin{frame}{Applications of QPE}
87+
\begin{itemize}
88+
\item Estimating eigenvalues of Hermitian operators.
89+
\item Integral part of Shor's algorithm for integer factorization.
90+
\item Quantum simulation for molecular energy estimation.
91+
\end{itemize}
92+
\end{frame}
93+
94+
% Conclusion
95+
\section{Conclusion}
96+
\begin{frame}{Conclusion}
97+
\begin{itemize}
98+
\item QPE is a powerful quantum algorithm for phase estimation.
99+
\item Leverages QFT and controlled unitary operations.
100+
\item Forms a foundational block for many quantum algorithms.
101+
\end{itemize}
102+
\end{frame}
103+
104+
% References
105+
\begin{frame}{References}
106+
\begin{itemize}
107+
\item M. A. Nielsen and I. L. Chuang, \textit{Quantum Computation and Quantum Information}.
108+
\item Quantum algorithms lecture notes.
109+
\end{itemize}
110+
\end{frame}
111+
112+
\end{document}

0 commit comments

Comments
 (0)