|
| 1 | +\documentclass{beamer} |
| 2 | +\usepackage[utf8]{inputenc} |
| 3 | +\usepackage{quantikz} |
| 4 | +\usepackage{amsmath} |
| 5 | +\usepackage{braket} |
| 6 | + |
| 7 | +\title{Quantum Phase Estimation (QPE)} |
| 8 | +\author{Morten Hjorth-Jensen} |
| 9 | +\date{Slides from 2007} |
| 10 | + |
| 11 | +\begin{document} |
| 12 | + |
| 13 | +% Title Slide |
| 14 | +\begin{frame} |
| 15 | + \titlepage |
| 16 | +\end{frame} |
| 17 | + |
| 18 | +% Outline Slide |
| 19 | +\begin{frame}{Outline} |
| 20 | + \tableofcontents |
| 21 | +\end{frame} |
| 22 | + |
| 23 | +% Introduction Slide |
| 24 | +\section{Introduction} |
| 25 | +\begin{frame}{What is Quantum Phase Estimation?} |
| 26 | + \begin{itemize} |
| 27 | + \item Quantum Phase Estimation (QPE) is a fundamental quantum algorithm to estimate the eigenphase $\phi$ of a unitary operator $U$. |
| 28 | + \item Given an eigenstate $\ket{\psi}$ such that $U\ket{\psi} = e^{2\pi i \phi}\ket{\psi}$, QPE estimates $\phi$ with high probability. |
| 29 | + \item It is a crucial subroutine in algorithms like Shor's and quantum simulations. |
| 30 | + \end{itemize} |
| 31 | +\end{frame} |
| 32 | + |
| 33 | +% Mathematical Background |
| 34 | +\section{Mathematical Background} |
| 35 | +\begin{frame}{Mathematical Background} |
| 36 | + \begin{itemize} |
| 37 | + \item Consider a unitary operator $U$ with eigenstate $\ket{\psi}$: |
| 38 | + \[ U\ket{\psi} = e^{2\pi i \phi} \ket{\psi}, \quad \phi \in [0,1). \] |
| 39 | + \item Goal: Estimate $\phi$ to $n$ bits of precision. |
| 40 | + \item Quantum Fourier Transform (QFT) plays a key role in extracting phase information. |
| 41 | + \end{itemize} |
| 42 | +\end{frame} |
| 43 | + |
| 44 | +% Circuit Structure |
| 45 | +\section{Circuit Structure} |
| 46 | +\begin{frame}{Quantum Circuit for QPE} |
| 47 | + \begin{figure} |
| 48 | + \centering |
| 49 | + \begin{quantikz} |
| 50 | + \lstick{$\ket{0}^{\otimes n}$} & \qwbundle{n} & \gate[2]{QFT^\dagger} & \meter{} \\ |
| 51 | + \lstick{$\ket{\psi}$} & \gate{U^{2^0}} & \gate{U^{2^1}} & \qw & \qw |
| 52 | + \end{quantikz} |
| 53 | + \caption{Quantum Phase Estimation Circuit with $n$ qubits.} |
| 54 | + \end{figure} |
| 55 | +\end{frame} |
| 56 | + |
| 57 | +% Derivation of the Algorithm |
| 58 | +\section{Derivation of the Algorithm} |
| 59 | +\begin{frame}{Step 1: Initialization} |
| 60 | + \begin{itemize} |
| 61 | + \item The system starts in $\ket{0}^{\otimes n} \otimes \ket{\psi}$. |
| 62 | + \item Apply Hadamard gates to the first $n$ qubits: |
| 63 | + \[ \frac{1}{2^{n/2}} \sum_{k=0}^{2^n -1} \ket{k} \otimes \ket{\psi}. \] |
| 64 | + \end{itemize} |
| 65 | +\end{frame} |
| 66 | + |
| 67 | +\begin{frame}{Step 2: Controlled Unitary Operations} |
| 68 | + \begin{itemize} |
| 69 | + \item Apply controlled-$U^{2^j}$ operations to create phase kickbacks: |
| 70 | + \[ \frac{1}{2^{n/2}} \sum_{k=0}^{2^n -1} \ket{k} \otimes U^k\ket{\psi}. \] |
| 71 | + \item For eigenstate $\ket{\psi}$ with eigenvalue $e^{2\pi i \phi}$: |
| 72 | + \[ U^k\ket{\psi} = e^{2\pi i \phi k} \ket{\psi}. \] |
| 73 | + \end{itemize} |
| 74 | +\end{frame} |
| 75 | + |
| 76 | +\begin{frame}{Step 3: Quantum Fourier Transform (QFT)} |
| 77 | + \begin{itemize} |
| 78 | + \item QFT on the first $n$ qubits transforms the state: |
| 79 | + \[ \frac{1}{2^{n/2}} \sum_{k=0}^{2^n -1} e^{2\pi i \phi k} \ket{k}. \] |
| 80 | + \item After QFT, we measure the most probable state representing $\phi$. |
| 81 | + \end{itemize} |
| 82 | +\end{frame} |
| 83 | + |
| 84 | +% Applications |
| 85 | +\section{Applications} |
| 86 | +\begin{frame}{Applications of QPE} |
| 87 | + \begin{itemize} |
| 88 | + \item Estimating eigenvalues of Hermitian operators. |
| 89 | + \item Integral part of Shor's algorithm for integer factorization. |
| 90 | + \item Quantum simulation for molecular energy estimation. |
| 91 | + \end{itemize} |
| 92 | +\end{frame} |
| 93 | + |
| 94 | +% Conclusion |
| 95 | +\section{Conclusion} |
| 96 | +\begin{frame}{Conclusion} |
| 97 | + \begin{itemize} |
| 98 | + \item QPE is a powerful quantum algorithm for phase estimation. |
| 99 | + \item Leverages QFT and controlled unitary operations. |
| 100 | + \item Forms a foundational block for many quantum algorithms. |
| 101 | + \end{itemize} |
| 102 | +\end{frame} |
| 103 | + |
| 104 | +% References |
| 105 | +\begin{frame}{References} |
| 106 | + \begin{itemize} |
| 107 | + \item M. A. Nielsen and I. L. Chuang, \textit{Quantum Computation and Quantum Information}. |
| 108 | + \item Quantum algorithms lecture notes. |
| 109 | + \end{itemize} |
| 110 | +\end{frame} |
| 111 | + |
| 112 | +\end{document} |
0 commit comments