Skip to content

Commit 405dc53

Browse files
committed
correcting notation
1 parent 8afac4a commit 405dc53

File tree

9 files changed

+432
-341
lines changed

9 files changed

+432
-341
lines changed

doc/pub/week6/html/week6-bs.html

Lines changed: 19 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -819,17 +819,17 @@ <h2 id="expectation-values" class="anchor">Expectation values </h2>
819819
for a Pauli-\( \boldsymbol{X} \) matrix
820820
</p>
821821
$$
822-
\boldsymbol{X}=R_{\sigma}\boldsymbol{Z}R_{\sigma} = HZH
822+
\boldsymbol{X}=\boldsymbol{R}_{\sigma}\boldsymbol{Z}\boldsymbol{R}_{\sigma} = \boldsymbol{HZH}
823823
$$
824824

825825
<p>for a Pauli-\( \boldsymbol{Y} \) matrix</p>
826826
$$
827-
\boldsymbol{Y}=R_{\sigma}\boldsymbol{Z}R_{\sigma}=\boldsymbol{HS}^{\dagger}\boldsymbol{ZHS},
827+
\boldsymbol{Y}=\boldsymbol{R}_{\sigma}\boldsymbol{Z}\boldsymbol{R}_{\sigma}=\boldsymbol{HS}^{\dagger}\boldsymbol{ZHS},
828828
$$
829829

830830
<p>and</p>
831831
$$
832-
\boldsymbol{Z}=R_{\sigma}ZR_{\sigma}=\boldsymbol{I}\boldsymbol{Z}\boldsymbol{I}=\boldsymbol{Z}.
832+
\boldsymbol{Z}=\boldsymbol{R}_{\sigma}\boldsymbol{Z}\boldsymbol{R}_{\sigma}=\boldsymbol{I}\boldsymbol{Z}\boldsymbol{I}=\boldsymbol{Z}.
833833
$$
834834

835835

@@ -888,7 +888,7 @@ <h2 id="reminder-on-rotations" class="anchor">Reminder on rotations </h2>
888888

889889
<p>Note the following identity of the basis rotator</p>
890890
$$
891-
R^\dagger_\sigma \boldsymbol{Z} R_\sigma = \sigma,
891+
\boldsymbol{R}^\dagger_\sigma \boldsymbol{Z} \boldsymbol{R}_\sigma = \boldsymbol{\sigma,}
892892
$$
893893

894894
<p>which follows from the fact that \( \boldsymbol{HZH}=\boldsymbol{X} \) and \( \boldsymbol{SXS}^\dagger=\boldsymbol{Y} \).</p>
@@ -1084,13 +1084,13 @@ <h2 id="non-interacting-solution" class="anchor">Non-interacting solution </h2>
10841084
<h2 id="rewriting-with-pauli-matrices" class="anchor">Rewriting with Pauli matrices </h2>
10851085
<p>We rewrite \( H \) (and \( H_0 \) and \( H_I \)) via Pauli matrices</p>
10861086
$$
1087-
\mathcal{H}_0 = \mathcal{E} I + \Omega \sigma_z, \quad \mathcal{E} = \frac{E_1
1087+
\mathcal{H}_0 = \mathcal{E} I + \Omega \boldsymbol{Z}, \quad \mathcal{E} = \frac{E_1
10881088
+ E_2}{2}, \; \Omega = \frac{E_1-E_2}{2},
10891089
$$
10901090

10911091
<p>and</p>
10921092
$$
1093-
\mathcal{H}_I = c \boldsymbol{I} +\omega_z\sigma_z + \omega_x\sigma_x,
1093+
\mathcal{H}_I = c \boldsymbol{I} +\omega_z\boldsymbol{Z} + \omega_x\boldsymbol{X},
10941094
$$
10951095

10961096
<p>with \( c = (V_{11}+V_{22})/2 \), \( \omega_z = (V_{11}-V_{22})/2 \) and \( \omega_x = V_{12}=V_{21} \).
@@ -1221,7 +1221,7 @@ <h2 id="measurements-and-computational-basis" class="anchor">Measurements and co
12211221
and the identity matrix \( \boldsymbol{I} \). Let us make this Hamiltonian that involves only one qubit somewhat more general
12221222
</p>
12231223
$$
1224-
\left\langle \psi \right| \mathcal{H} \left| \psi \right\rangle = a \cdot \left\langle \psi \right| I \left| \psi \right\rangle + b \cdot \left\langle \psi \right| Z \left| \psi \right\rangle + c \cdot \left\langle \psi \right| X \left| \psi \right\rangle + d \cdot \left\langle \psi \right| Y \left| \psi \right\rangle.
1224+
\left\langle \psi \right| \mathcal{H} \left| \psi \right\rangle = a \cdot \left\langle \psi \right| \boldsymbol{I} \left| \psi \right\rangle + b \cdot \left\langle \psi \right| \boldsymbol{Z} \left| \psi \right\rangle + c \cdot \left\langle \psi \right| \boldsymbol{X} \left| \psi \right\rangle + d \cdot \left\langle \psi \right| \boldsymbol{Y} \left| \psi \right\rangle.
12251225
$$
12261226

12271227

@@ -1254,7 +1254,7 @@ <h2 id="in-more-detail" class="anchor">In more detail </h2>
12541254
<p>We have</p>
12551255
$$
12561256
\begin{align*}
1257-
&\text{Z eigenvectors} \qquad
1257+
&\text{\boldsymbol{Z}-eigenvectors} \qquad
12581258
\left| 0 \right\rangle = \begin{bmatrix}
12591259
1\\
12601260
0
@@ -1272,7 +1272,7 @@ <h2 id="for-the-other-two-matrices" class="anchor">For the other two matrices </
12721272

12731273
$$
12741274
\begin{align*}
1275-
&\text{X eigenvectors} \qquad
1275+
&\text{\boldsymbol{X}-eigenvectors} \qquad
12761276
\left| + \right\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix}
12771277
1\\
12781278
1
@@ -1282,7 +1282,7 @@ <h2 id="for-the-other-two-matrices" class="anchor">For the other two matrices </
12821282
-1
12831283
\end{bmatrix},
12841284
\\
1285-
&\text{Y eigenvectors} \qquad
1285+
&\text{\boldsymbol{Y}-eigenvectors} \qquad
12861286
\left| +i \right\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix}
12871287
1\\
12881288
i
@@ -1309,11 +1309,11 @@ <h2 id="explicit-eigenvalues" class="anchor">Explicit eigenvalues </h2>
13091309

13101310
$$
13111311
\begin{align*}
1312-
\left\langle \psi \right| Z \left| \psi \right\rangle &= \left( {c_1^z}^* \cdot \left\langle 0 \right| + {c_2^z}^* \cdot \left\langle 1 \right| \right) Z \left( c_1^z \cdot \left| 0 \right\rangle + c_2^z \cdot \left| 1 \right\rangle \right) = {\left| c_1^z \right|}^2 - {\left| c_2^z \right|}^2,
1312+
\left\langle \psi \right| \boldsymbol{Z} \left| \psi \right\rangle &= \left( {c_1^z}^* \cdot \left\langle 0 \right| + {c_2^z}^* \cdot \left\langle 1 \right| \right) Z \left( c_1^z \cdot \left| 0 \right\rangle + c_2^z \cdot \left| 1 \right\rangle \right) = {\left| c_1^z \right|}^2 - {\left| c_2^z \right|}^2,
13131313
\\
1314-
\left\langle \psi \right| X \left| \psi \right\rangle &= \left( {c_1^x}^* \cdot \left\langle + \right| + {c_2^x}^* \cdot \left\langle - \right| \right) X \left( c_1^x \cdot \left| + \right\rangle + c_2^x \cdot \left| - \right\rangle \right) = {\left| c_1^x \right|}^2 - {\left| c_2^x \right|}^2,
1314+
\left\langle \psi \right| \boldsymbol{X} \left| \psi \right\rangle &= \left( {c_1^x}^* \cdot \left\langle + \right| + {c_2^x}^* \cdot \left\langle - \right| \right) X \left( c_1^x \cdot \left| + \right\rangle + c_2^x \cdot \left| - \right\rangle \right) = {\left| c_1^x \right|}^2 - {\left| c_2^x \right|}^2,
13151315
\\
1316-
\left\langle \psi \right| Y \left| \psi \right\rangle &= \left( {c_1^y}^* \cdot \left\langle +i \right| + {c_2^y}^* \cdot \left\langle -i \right| \right) Y \left( c_1^y \cdot \left| +i \right\rangle + c_2^y \cdot \left| -i \right\rangle \right) = {\left| c_1^y \right|}^2 - {\left| c_2^y \right|}^2.
1316+
\left\langle \psi \right| \boldsymbol{Y} \left| \psi \right\rangle &= \left( {c_1^y}^* \cdot \left\langle +i \right| + {c_2^y}^* \cdot \left\langle -i \right| \right) Y \left( c_1^y \cdot \left| +i \right\rangle + c_2^y \cdot \left| -i \right\rangle \right) = {\left| c_1^y \right|}^2 - {\left| c_2^y \right|}^2.
13171317
\end{align*}
13181318
$$
13191319

@@ -1334,18 +1334,18 @@ <h2 id="unitary-transformation-of-boldsymbol-x" class="anchor">Unitary transform
13341334

13351335
<p>If we use the Hadamard gate</p>
13361336
$$
1337-
H = \frac{1}{\sqrt{2}}\begin{bmatrix}
1337+
\boldsymbol{H} = \frac{1}{\sqrt{2}}\begin{bmatrix}
13381338
1 & 1\\
13391339
1 & -1
13401340
\end{bmatrix},
13411341
$$
13421342

13431343
<p>we can rewrite</p>
13441344
$$
1345-
X=HZH.
1345+
\boldsymbol{X}=\boldsymbol{HZH}.
13461346
$$
13471347

1348-
<p>The Hadamard gate/matrix is a unitary matrix with the property that \( H^2=\boldsymbol{I} \).</p>
1348+
<p>The Hadamard gate/matrix is a unitary matrix with the property that \( \boldsymbol{H}^2=\boldsymbol{I} \).</p>
13491349

13501350
<!-- !split -->
13511351
<h2 id="generalizing" class="anchor">Generalizing </h2>
@@ -1393,7 +1393,7 @@ <h2 id="multiple-ansatzes" class="anchor">Multiple ansatzes </h2>
13931393
</p>
13941394

13951395
$$
1396-
\langle \psi \vert (c+\mathcal{E})\boldsymbol{I} + (\Omega+\omega_z)\boldsymbol{\sigma}_z + \omega_x\boldsymbol{\sigma}_x\vert \psi \rangle.
1396+
\langle \psi \vert (c+\mathcal{E})\boldsymbol{I} + (\Omega+\omega_z)\boldsymbol{Z} + \omega_x\boldsymbol{X}\vert \psi \rangle.
13971397
$$
13981398

13991399

@@ -1410,13 +1410,13 @@ <h2 id="rotations-again" class="anchor">Rotations again </h2>
14101410
</p>
14111411

14121412
$$
1413-
R_x(\theta)=\cos{\frac{\theta}{2}}\boldsymbol{I}-\imath \sin{\frac{\theta}{2}}\boldsymbol{\sigma}_x,
1413+
R_x(\theta)=\cos{\frac{\theta}{2}}\boldsymbol{I}-\imath \sin{\frac{\theta}{2}}\boldsymbol{X},
14141414
$$
14151415

14161416
<p>and</p>
14171417

14181418
$$
1419-
R_y(\phi)=\cos{\frac{\phi}{2}}\boldsymbol{I}-\imath \sin{\frac{\phi}{2}}\boldsymbol{\sigma}_y.
1419+
R_y(\phi)=\cos{\frac{\phi}{2}}\boldsymbol{I}-\imath \sin{\frac{\phi}{2}}\boldsymbol{Y}.
14201420
$$
14211421

14221422

doc/pub/week6/html/week6-reveal.html

Lines changed: 19 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -734,21 +734,21 @@ <h2 id="expectation-values">Expectation values </h2>
734734
</p>
735735
<p>&nbsp;<br>
736736
$$
737-
\boldsymbol{X}=R_{\sigma}\boldsymbol{Z}R_{\sigma} = HZH
737+
\boldsymbol{X}=\boldsymbol{R}_{\sigma}\boldsymbol{Z}\boldsymbol{R}_{\sigma} = \boldsymbol{HZH}
738738
$$
739739
<p>&nbsp;<br>
740740

741741
<p>for a Pauli-\( \boldsymbol{Y} \) matrix</p>
742742
<p>&nbsp;<br>
743743
$$
744-
\boldsymbol{Y}=R_{\sigma}\boldsymbol{Z}R_{\sigma}=\boldsymbol{HS}^{\dagger}\boldsymbol{ZHS},
744+
\boldsymbol{Y}=\boldsymbol{R}_{\sigma}\boldsymbol{Z}\boldsymbol{R}_{\sigma}=\boldsymbol{HS}^{\dagger}\boldsymbol{ZHS},
745745
$$
746746
<p>&nbsp;<br>
747747

748748
<p>and</p>
749749
<p>&nbsp;<br>
750750
$$
751-
\boldsymbol{Z}=R_{\sigma}ZR_{\sigma}=\boldsymbol{I}\boldsymbol{Z}\boldsymbol{I}=\boldsymbol{Z}.
751+
\boldsymbol{Z}=\boldsymbol{R}_{\sigma}\boldsymbol{Z}\boldsymbol{R}_{\sigma}=\boldsymbol{I}\boldsymbol{Z}\boldsymbol{I}=\boldsymbol{Z}.
752752
$$
753753
<p>&nbsp;<br>
754754
</section>
@@ -822,7 +822,7 @@ <h2 id="reminder-on-rotations">Reminder on rotations </h2>
822822
<p>Note the following identity of the basis rotator</p>
823823
<p>&nbsp;<br>
824824
$$
825-
R^\dagger_\sigma \boldsymbol{Z} R_\sigma = \sigma,
825+
\boldsymbol{R}^\dagger_\sigma \boldsymbol{Z} \boldsymbol{R}_\sigma = \boldsymbol{\sigma,}
826826
$$
827827
<p>&nbsp;<br>
828828

@@ -1051,15 +1051,15 @@ <h2 id="rewriting-with-pauli-matrices">Rewriting with Pauli matrices </h2>
10511051
<p>We rewrite \( H \) (and \( H_0 \) and \( H_I \)) via Pauli matrices</p>
10521052
<p>&nbsp;<br>
10531053
$$
1054-
\mathcal{H}_0 = \mathcal{E} I + \Omega \sigma_z, \quad \mathcal{E} = \frac{E_1
1054+
\mathcal{H}_0 = \mathcal{E} I + \Omega \boldsymbol{Z}, \quad \mathcal{E} = \frac{E_1
10551055
+ E_2}{2}, \; \Omega = \frac{E_1-E_2}{2},
10561056
$$
10571057
<p>&nbsp;<br>
10581058

10591059
<p>and</p>
10601060
<p>&nbsp;<br>
10611061
$$
1062-
\mathcal{H}_I = c \boldsymbol{I} +\omega_z\sigma_z + \omega_x\sigma_x,
1062+
\mathcal{H}_I = c \boldsymbol{I} +\omega_z\boldsymbol{Z} + \omega_x\boldsymbol{X},
10631063
$$
10641064
<p>&nbsp;<br>
10651065

@@ -1196,7 +1196,7 @@ <h2 id="measurements-and-computational-basis">Measurements and computational bas
11961196
</p>
11971197
<p>&nbsp;<br>
11981198
$$
1199-
\left\langle \psi \right| \mathcal{H} \left| \psi \right\rangle = a \cdot \left\langle \psi \right| I \left| \psi \right\rangle + b \cdot \left\langle \psi \right| Z \left| \psi \right\rangle + c \cdot \left\langle \psi \right| X \left| \psi \right\rangle + d \cdot \left\langle \psi \right| Y \left| \psi \right\rangle.
1199+
\left\langle \psi \right| \mathcal{H} \left| \psi \right\rangle = a \cdot \left\langle \psi \right| \boldsymbol{I} \left| \psi \right\rangle + b \cdot \left\langle \psi \right| \boldsymbol{Z} \left| \psi \right\rangle + c \cdot \left\langle \psi \right| \boldsymbol{X} \left| \psi \right\rangle + d \cdot \left\langle \psi \right| \boldsymbol{Y} \left| \psi \right\rangle.
12001200
$$
12011201
<p>&nbsp;<br>
12021202
</section>
@@ -1236,7 +1236,7 @@ <h2 id="in-more-detail">In more detail </h2>
12361236
<p>&nbsp;<br>
12371237
$$
12381238
\begin{align*}
1239-
&\text{Z eigenvectors} \qquad
1239+
&\text{\boldsymbol{Z}-eigenvectors} \qquad
12401240
\left| 0 \right\rangle = \begin{bmatrix}
12411241
1\\
12421242
0
@@ -1256,7 +1256,7 @@ <h2 id="for-the-other-two-matrices">For the other two matrices </h2>
12561256
<p>&nbsp;<br>
12571257
$$
12581258
\begin{align*}
1259-
&\text{X eigenvectors} \qquad
1259+
&\text{\boldsymbol{X}-eigenvectors} \qquad
12601260
\left| + \right\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix}
12611261
1\\
12621262
1
@@ -1266,7 +1266,7 @@ <h2 id="for-the-other-two-matrices">For the other two matrices </h2>
12661266
-1
12671267
\end{bmatrix},
12681268
\\
1269-
&\text{Y eigenvectors} \qquad
1269+
&\text{\boldsymbol{Y}-eigenvectors} \qquad
12701270
\left| +i \right\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix}
12711271
1\\
12721272
i
@@ -1296,11 +1296,11 @@ <h2 id="explicit-eigenvalues">Explicit eigenvalues </h2>
12961296
<p>&nbsp;<br>
12971297
$$
12981298
\begin{align*}
1299-
\left\langle \psi \right| Z \left| \psi \right\rangle &= \left( {c_1^z}^* \cdot \left\langle 0 \right| + {c_2^z}^* \cdot \left\langle 1 \right| \right) Z \left( c_1^z \cdot \left| 0 \right\rangle + c_2^z \cdot \left| 1 \right\rangle \right) = {\left| c_1^z \right|}^2 - {\left| c_2^z \right|}^2,
1299+
\left\langle \psi \right| \boldsymbol{Z} \left| \psi \right\rangle &= \left( {c_1^z}^* \cdot \left\langle 0 \right| + {c_2^z}^* \cdot \left\langle 1 \right| \right) Z \left( c_1^z \cdot \left| 0 \right\rangle + c_2^z \cdot \left| 1 \right\rangle \right) = {\left| c_1^z \right|}^2 - {\left| c_2^z \right|}^2,
13001300
\\
1301-
\left\langle \psi \right| X \left| \psi \right\rangle &= \left( {c_1^x}^* \cdot \left\langle + \right| + {c_2^x}^* \cdot \left\langle - \right| \right) X \left( c_1^x \cdot \left| + \right\rangle + c_2^x \cdot \left| - \right\rangle \right) = {\left| c_1^x \right|}^2 - {\left| c_2^x \right|}^2,
1301+
\left\langle \psi \right| \boldsymbol{X} \left| \psi \right\rangle &= \left( {c_1^x}^* \cdot \left\langle + \right| + {c_2^x}^* \cdot \left\langle - \right| \right) X \left( c_1^x \cdot \left| + \right\rangle + c_2^x \cdot \left| - \right\rangle \right) = {\left| c_1^x \right|}^2 - {\left| c_2^x \right|}^2,
13021302
\\
1303-
\left\langle \psi \right| Y \left| \psi \right\rangle &= \left( {c_1^y}^* \cdot \left\langle +i \right| + {c_2^y}^* \cdot \left\langle -i \right| \right) Y \left( c_1^y \cdot \left| +i \right\rangle + c_2^y \cdot \left| -i \right\rangle \right) = {\left| c_1^y \right|}^2 - {\left| c_2^y \right|}^2.
1303+
\left\langle \psi \right| \boldsymbol{Y} \left| \psi \right\rangle &= \left( {c_1^y}^* \cdot \left\langle +i \right| + {c_2^y}^* \cdot \left\langle -i \right| \right) Y \left( c_1^y \cdot \left| +i \right\rangle + c_2^y \cdot \left| -i \right\rangle \right) = {\left| c_1^y \right|}^2 - {\left| c_2^y \right|}^2.
13041304
\end{align*}
13051305
$$
13061306
<p>&nbsp;<br>
@@ -1324,7 +1324,7 @@ <h2 id="unitary-transformation-of-boldsymbol-x">Unitary transformation of \( \bo
13241324
<p>If we use the Hadamard gate</p>
13251325
<p>&nbsp;<br>
13261326
$$
1327-
H = \frac{1}{\sqrt{2}}\begin{bmatrix}
1327+
\boldsymbol{H} = \frac{1}{\sqrt{2}}\begin{bmatrix}
13281328
1 & 1\\
13291329
1 & -1
13301330
\end{bmatrix},
@@ -1334,11 +1334,11 @@ <h2 id="unitary-transformation-of-boldsymbol-x">Unitary transformation of \( \bo
13341334
<p>we can rewrite</p>
13351335
<p>&nbsp;<br>
13361336
$$
1337-
X=HZH.
1337+
\boldsymbol{X}=\boldsymbol{HZH}.
13381338
$$
13391339
<p>&nbsp;<br>
13401340

1341-
<p>The Hadamard gate/matrix is a unitary matrix with the property that \( H^2=\boldsymbol{I} \).</p>
1341+
<p>The Hadamard gate/matrix is a unitary matrix with the property that \( \boldsymbol{H}^2=\boldsymbol{I} \).</p>
13421342
</section>
13431343

13441344
<section>
@@ -1393,7 +1393,7 @@ <h2 id="multiple-ansatzes">Multiple ansatzes </h2>
13931393

13941394
<p>&nbsp;<br>
13951395
$$
1396-
\langle \psi \vert (c+\mathcal{E})\boldsymbol{I} + (\Omega+\omega_z)\boldsymbol{\sigma}_z + \omega_x\boldsymbol{\sigma}_x\vert \psi \rangle.
1396+
\langle \psi \vert (c+\mathcal{E})\boldsymbol{I} + (\Omega+\omega_z)\boldsymbol{Z} + \omega_x\boldsymbol{X}\vert \psi \rangle.
13971397
$$
13981398
<p>&nbsp;<br>
13991399
</section>
@@ -1412,15 +1412,15 @@ <h2 id="rotations-again">Rotations again </h2>
14121412

14131413
<p>&nbsp;<br>
14141414
$$
1415-
R_x(\theta)=\cos{\frac{\theta}{2}}\boldsymbol{I}-\imath \sin{\frac{\theta}{2}}\boldsymbol{\sigma}_x,
1415+
R_x(\theta)=\cos{\frac{\theta}{2}}\boldsymbol{I}-\imath \sin{\frac{\theta}{2}}\boldsymbol{X},
14161416
$$
14171417
<p>&nbsp;<br>
14181418

14191419
<p>and</p>
14201420

14211421
<p>&nbsp;<br>
14221422
$$
1423-
R_y(\phi)=\cos{\frac{\phi}{2}}\boldsymbol{I}-\imath \sin{\frac{\phi}{2}}\boldsymbol{\sigma}_y.
1423+
R_y(\phi)=\cos{\frac{\phi}{2}}\boldsymbol{I}-\imath \sin{\frac{\phi}{2}}\boldsymbol{Y}.
14241424
$$
14251425
<p>&nbsp;<br>
14261426
</section>

0 commit comments

Comments
 (0)