|
| 1 | + |
| 2 | +\documentclass[11pt]{article} |
| 3 | +\usepackage[utf8]{inputenc} |
| 4 | +\usepackage{amsmath, amssymb} |
| 5 | +\usepackage{braket} |
| 6 | +\usepackage{quantikz} |
| 7 | +\usepackage{geometry} |
| 8 | +\usepackage{graphicx} |
| 9 | +\geometry{a4paper, margin=1in} |
| 10 | + |
| 11 | +\title{Quantum Phase Estimation (QPE)} |
| 12 | +\author{Morten HJ} |
| 13 | +\date{\today} |
| 14 | + |
| 15 | +\begin{document} |
| 16 | + |
| 17 | +\maketitle |
| 18 | +\tableofcontents |
| 19 | +\newpage |
| 20 | + |
| 21 | +% Introduction |
| 22 | +\section{Introduction} |
| 23 | +Quantum Phase Estimation (QPE) is a fundamental quantum algorithm that estimates the eigenphase $\phi$ of a unitary operator $U$. Given an eigenstate $\ket{\psi}$ satisfying: |
| 24 | +\begin{equation} |
| 25 | + U\ket{\psi} = e^{2\pi i \phi} \ket{\psi}, |
| 26 | +\end{equation} |
| 27 | +QPE provides an estimate of $\phi$ with high probability. It is a crucial subroutine for algorithms like Shor's factoring algorithm and quantum simulations. |
| 28 | + |
| 29 | +% Mathematical Background |
| 30 | +\section{Mathematical Background} |
| 31 | +The goal of QPE is to estimate the phase $\phi \in [0,1)$ where: |
| 32 | +\begin{equation} |
| 33 | + U\ket{\psi} = e^{2\pi i \phi} \ket{\psi}. |
| 34 | +\end{equation} |
| 35 | + |
| 36 | +\subsection{Quantum Fourier Transform (QFT)} |
| 37 | +The Quantum Fourier Transform (QFT) on $n$ qubits is defined as: |
| 38 | +\begin{equation} |
| 39 | + \ket{x} \rightarrow \frac{1}{\sqrt{2^n}}\sum_{y=0}^{2^n-1} e^{2\pi i xy / 2^n}\ket{y}. |
| 40 | +\end{equation} |
| 41 | +QFT is essential for extracting phase information in QPE. |
| 42 | + |
| 43 | +\newpage |
| 44 | + |
| 45 | +% Quantum Circuit and Working |
| 46 | +\section{Quantum Circuit and Working} |
| 47 | +The quantum circuit for QPE consists of two quantum registers: |
| 48 | +\begin{itemize} |
| 49 | + \item The first register with $n$ qubits is initialized to $\ket{0}^{\otimes n}$. |
| 50 | + \item The second register is initialized to the eigenstate $\ket{\psi}$ of $U$. |
| 51 | +\end{itemize} |
| 52 | + |
| 53 | +\begin{figure}[h!] |
| 54 | + \centering |
| 55 | + \begin{quantikz} |
| 56 | + \lstick{$\ket{0}^{\otimes n}$} & \gate{H} & \ctrl{1} & \gate{QFT^\dagger} & \meter{} \\ |
| 57 | + \lstick{$\ket{\psi}$} & \qw & \gate{U^{2^j}} & \qw & \qw |
| 58 | + \end{quantikz} |
| 59 | + \caption{Quantum Phase Estimation Circuit} |
| 60 | +\end{figure} |
| 61 | + |
| 62 | +% Derivation of the Algorithm |
| 63 | +\section{Derivation of the Algorithm} |
| 64 | +\subsection{Step 1: Initialization} |
| 65 | +The system starts in the state: |
| 66 | +\begin{equation} |
| 67 | + \ket{0}^{\otimes n} \otimes \ket{\psi}. |
| 68 | +\end{equation} |
| 69 | +Applying Hadamard gates to the first register creates a superposition: |
| 70 | +\begin{equation} |
| 71 | + \frac{1}{2^{n/2}}\sum_{k=0}^{2^n -1} \ket{k}\otimes \ket{\psi}. |
| 72 | +\end{equation} |
| 73 | + |
| 74 | +\subsection{Step 2: Controlled Unitary Operations} |
| 75 | +Controlled-$U^{2^j}$ gates apply the operation $U$ with exponential powers: |
| 76 | +\begin{equation} |
| 77 | + \frac{1}{2^{n/2}}\sum_{k=0}^{2^n -1} \ket{k} \otimes U^k\ket{\psi}. |
| 78 | +\end{equation} |
| 79 | +For eigenstate $\ket{\psi}$, this becomes: |
| 80 | +\begin{equation} |
| 81 | + \frac{1}{2^{n/2}}\sum_{k=0}^{2^n -1} e^{2\pi i \phi k}\ket{k} \otimes \ket{\psi}. |
| 82 | +\end{equation} |
| 83 | + |
| 84 | +\subsection{Step 3: Quantum Fourier Transform (QFT)} |
| 85 | +Applying QFT to the first register transforms the state to: |
| 86 | +\begin{equation} |
| 87 | + \sum_{k=0}^{2^n -1} c_k \ket{k}, |
| 88 | +\end{equation} |
| 89 | +where coefficients $c_k$ are peaked near $k \approx 2^n \phi$. |
| 90 | + |
| 91 | +\subsection{Step 4: Measurement} |
| 92 | +Measuring the first register gives an $n$-bit estimate of $\phi$ with high probability. |
| 93 | + |
| 94 | +\newpage |
| 95 | + |
| 96 | +% Applications |
| 97 | +\section{Applications of QPE} |
| 98 | +QPE is a foundational algorithm with several key applications: |
| 99 | +\begin{itemize} |
| 100 | + \item \textbf{Factoring and Cryptography:} Integral to Shor's algorithm for integer factoring. |
| 101 | + \item \textbf{Quantum Simulations:} Estimating eigenvalues of Hamiltonians in quantum chemistry. |
| 102 | + \item \textbf{Amplitude Estimation:} Enhances algorithms like Grover's search. |
| 103 | +\end{itemize} |
| 104 | + |
| 105 | +% Challenges and Practical Considerations |
| 106 | +\section{Challenges and Practical Considerations} |
| 107 | +\begin{itemize} |
| 108 | + \item \textbf{Qubit Requirements:} Requires a large number of qubits for high precision. |
| 109 | + \item \textbf{Gate Depth:} Controlled-$U^{2^j}$ operations increase gate complexity. |
| 110 | + \item \textbf{Noise Sensitivity:} Errors in QFT or controlled gates impact accuracy. |
| 111 | +\end{itemize} |
| 112 | + |
| 113 | +% Conclusion |
| 114 | +\section{Conclusion} |
| 115 | +Quantum Phase Estimation is a powerful quantum algorithm for extracting phase information of unitary operators. It forms the foundation for many advanced quantum algorithms and demonstrates the power of quantum Fourier transforms in computational tasks. |
| 116 | + |
| 117 | +% References |
| 118 | +\section{References} |
| 119 | +\begin{thebibliography}{9} |
| 120 | +\bibitem{nielsen} M. A. Nielsen and I. L. Chuang, \textit{Quantum Computation and Quantum Information}, Cambridge University Press, 2000. |
| 121 | +\bibitem{preskill} J. Preskill, \textit{Lecture Notes on Quantum Computation}, Caltech. |
| 122 | +\end{thebibliography} |
| 123 | + |
| 124 | +\end{document} |
0 commit comments