Skip to content

Commit 31bd247

Browse files
committed
added files from earlier years
1 parent 6ca9821 commit 31bd247

File tree

2 files changed

+249
-0
lines changed

2 files changed

+249
-0
lines changed
Lines changed: 124 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,124 @@
1+
2+
\documentclass[11pt]{article}
3+
\usepackage[utf8]{inputenc}
4+
\usepackage{amsmath, amssymb}
5+
\usepackage{braket}
6+
\usepackage{quantikz}
7+
\usepackage{geometry}
8+
\usepackage{graphicx}
9+
\geometry{a4paper, margin=1in}
10+
11+
\title{Quantum Phase Estimation (QPE)}
12+
\author{Morten HJ}
13+
\date{\today}
14+
15+
\begin{document}
16+
17+
\maketitle
18+
\tableofcontents
19+
\newpage
20+
21+
% Introduction
22+
\section{Introduction}
23+
Quantum Phase Estimation (QPE) is a fundamental quantum algorithm that estimates the eigenphase $\phi$ of a unitary operator $U$. Given an eigenstate $\ket{\psi}$ satisfying:
24+
\begin{equation}
25+
U\ket{\psi} = e^{2\pi i \phi} \ket{\psi},
26+
\end{equation}
27+
QPE provides an estimate of $\phi$ with high probability. It is a crucial subroutine for algorithms like Shor's factoring algorithm and quantum simulations.
28+
29+
% Mathematical Background
30+
\section{Mathematical Background}
31+
The goal of QPE is to estimate the phase $\phi \in [0,1)$ where:
32+
\begin{equation}
33+
U\ket{\psi} = e^{2\pi i \phi} \ket{\psi}.
34+
\end{equation}
35+
36+
\subsection{Quantum Fourier Transform (QFT)}
37+
The Quantum Fourier Transform (QFT) on $n$ qubits is defined as:
38+
\begin{equation}
39+
\ket{x} \rightarrow \frac{1}{\sqrt{2^n}}\sum_{y=0}^{2^n-1} e^{2\pi i xy / 2^n}\ket{y}.
40+
\end{equation}
41+
QFT is essential for extracting phase information in QPE.
42+
43+
\newpage
44+
45+
% Quantum Circuit and Working
46+
\section{Quantum Circuit and Working}
47+
The quantum circuit for QPE consists of two quantum registers:
48+
\begin{itemize}
49+
\item The first register with $n$ qubits is initialized to $\ket{0}^{\otimes n}$.
50+
\item The second register is initialized to the eigenstate $\ket{\psi}$ of $U$.
51+
\end{itemize}
52+
53+
\begin{figure}[h!]
54+
\centering
55+
\begin{quantikz}
56+
\lstick{$\ket{0}^{\otimes n}$} & \gate{H} & \ctrl{1} & \gate{QFT^\dagger} & \meter{} \\
57+
\lstick{$\ket{\psi}$} & \qw & \gate{U^{2^j}} & \qw & \qw
58+
\end{quantikz}
59+
\caption{Quantum Phase Estimation Circuit}
60+
\end{figure}
61+
62+
% Derivation of the Algorithm
63+
\section{Derivation of the Algorithm}
64+
\subsection{Step 1: Initialization}
65+
The system starts in the state:
66+
\begin{equation}
67+
\ket{0}^{\otimes n} \otimes \ket{\psi}.
68+
\end{equation}
69+
Applying Hadamard gates to the first register creates a superposition:
70+
\begin{equation}
71+
\frac{1}{2^{n/2}}\sum_{k=0}^{2^n -1} \ket{k}\otimes \ket{\psi}.
72+
\end{equation}
73+
74+
\subsection{Step 2: Controlled Unitary Operations}
75+
Controlled-$U^{2^j}$ gates apply the operation $U$ with exponential powers:
76+
\begin{equation}
77+
\frac{1}{2^{n/2}}\sum_{k=0}^{2^n -1} \ket{k} \otimes U^k\ket{\psi}.
78+
\end{equation}
79+
For eigenstate $\ket{\psi}$, this becomes:
80+
\begin{equation}
81+
\frac{1}{2^{n/2}}\sum_{k=0}^{2^n -1} e^{2\pi i \phi k}\ket{k} \otimes \ket{\psi}.
82+
\end{equation}
83+
84+
\subsection{Step 3: Quantum Fourier Transform (QFT)}
85+
Applying QFT to the first register transforms the state to:
86+
\begin{equation}
87+
\sum_{k=0}^{2^n -1} c_k \ket{k},
88+
\end{equation}
89+
where coefficients $c_k$ are peaked near $k \approx 2^n \phi$.
90+
91+
\subsection{Step 4: Measurement}
92+
Measuring the first register gives an $n$-bit estimate of $\phi$ with high probability.
93+
94+
\newpage
95+
96+
% Applications
97+
\section{Applications of QPE}
98+
QPE is a foundational algorithm with several key applications:
99+
\begin{itemize}
100+
\item \textbf{Factoring and Cryptography:} Integral to Shor's algorithm for integer factoring.
101+
\item \textbf{Quantum Simulations:} Estimating eigenvalues of Hamiltonians in quantum chemistry.
102+
\item \textbf{Amplitude Estimation:} Enhances algorithms like Grover's search.
103+
\end{itemize}
104+
105+
% Challenges and Practical Considerations
106+
\section{Challenges and Practical Considerations}
107+
\begin{itemize}
108+
\item \textbf{Qubit Requirements:} Requires a large number of qubits for high precision.
109+
\item \textbf{Gate Depth:} Controlled-$U^{2^j}$ operations increase gate complexity.
110+
\item \textbf{Noise Sensitivity:} Errors in QFT or controlled gates impact accuracy.
111+
\end{itemize}
112+
113+
% Conclusion
114+
\section{Conclusion}
115+
Quantum Phase Estimation is a powerful quantum algorithm for extracting phase information of unitary operators. It forms the foundation for many advanced quantum algorithms and demonstrates the power of quantum Fourier transforms in computational tasks.
116+
117+
% References
118+
\section{References}
119+
\begin{thebibliography}{9}
120+
\bibitem{nielsen} M. A. Nielsen and I. L. Chuang, \textit{Quantum Computation and Quantum Information}, Cambridge University Press, 2000.
121+
\bibitem{preskill} J. Preskill, \textit{Lecture Notes on Quantum Computation}, Caltech.
122+
\end{thebibliography}
123+
124+
\end{document}
Lines changed: 125 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,125 @@
1+
2+
\documentclass{beamer}
3+
\usepackage[utf8]{inputenc}
4+
\usepackage{quantikz}
5+
\usepackage{amsmath}
6+
\usepackage{braket}
7+
8+
\title{Shor's Algorithm}
9+
\author{Morten HJ}
10+
\date{2006}
11+
12+
\begin{document}
13+
14+
% Title Slide
15+
\begin{frame}
16+
\titlepage
17+
\end{frame}
18+
19+
% Outline Slide
20+
\begin{frame}{Outline}
21+
\tableofcontents
22+
\end{frame}
23+
24+
% Introduction Slide
25+
\section{Introduction}
26+
\begin{frame}{What is Shor's Algorithm?}
27+
\begin{itemize}
28+
\item Shor's algorithm is a quantum algorithm for integer factorization.
29+
\item It efficiently factors large integers by leveraging quantum period finding.
30+
\item Exponential speedup over the best-known classical algorithms.
31+
\item Breaks RSA encryption, which relies on the difficulty of factoring.
32+
\end{itemize}
33+
\end{frame}
34+
35+
% Mathematical Background
36+
\section{Mathematical Background}
37+
\begin{frame}{Number Theory Basics}
38+
\begin{itemize}
39+
\item The problem: Factor an integer $N$ into its prime factors.
40+
\item Reduce factoring to period finding:
41+
\[ f(x) = a^x \mod N, \]
42+
where $a$ is randomly chosen such that $\gcd(a, N) = 1$.
43+
\item The period $r$ satisfies:
44+
\[ a^r \equiv 1 \mod N. \]
45+
\item Once $r$ is known, factors are given by:
46+
\[ \gcd(a^{r/2} \pm 1, N). \]
47+
\end{itemize}
48+
\end{frame}
49+
50+
% Quantum Period Finding
51+
\section{Quantum Period Finding}
52+
\begin{frame}{Quantum Period Finding: Key to Shor's Algorithm}
53+
\begin{itemize}
54+
\item Quantum subroutine for finding the period $r$ of $f(x)$.
55+
\item Similar to Quantum Phase Estimation (QPE).
56+
\item Uses two quantum registers:
57+
\begin{itemize}
58+
\item First register: Superposition of all possible inputs $x$.
59+
\item Second register: Computes $f(x) = a^x \mod N$.
60+
\end{itemize}
61+
\end{itemize}
62+
\end{frame}
63+
64+
% Quantum Circuit Design
65+
\section{Quantum Circuit Design}
66+
\begin{frame}{Quantum Circuit for Shor's Algorithm}
67+
\begin{figure}
68+
\centering
69+
\begin{quantikz}
70+
\lstick{$\ket{0}^{\otimes n}$} & \qwbundle{n} & \gate{H} & \ctrl{1} & \gate{QFT^\dagger} & \meter{} \\
71+
\lstick{$\ket{1}$} & \qw & \qw & \gate{U_f} & \qw & \qw
72+
\end{quantikz}
73+
\caption{Quantum circuit for period finding in Shor's algorithm.}
74+
\end{figure}
75+
\end{frame}
76+
77+
\begin{frame}{Applying Quantum Fourier Transform (QFT)}
78+
\begin{itemize}
79+
\item The QFT is applied to the first register after the controlled unitary operations.
80+
\item Peaks in the measurement correspond to multiples of $1/r$.
81+
\item Post-processing classically determines $r$ by continued fractions.
82+
\end{itemize}
83+
\end{frame}
84+
85+
% Classical Post-Processing
86+
\section{Classical Post-Processing}
87+
\begin{frame}{Classical Post-Processing}
88+
\begin{itemize}
89+
\item Once $r$ is found, factors of $N$ are computed by:
90+
\[ \gcd(a^{r/2} \pm 1, N). \]
91+
\item If $r$ is odd or $a^{r/2} \equiv -1 \mod N$, try a different $a$.
92+
\item With high probability, this yields a non-trivial factor of $N$.
93+
\end{itemize}
94+
\end{frame}
95+
96+
% Complexity and Practical Considerations
97+
\section{Complexity and Practical Considerations}
98+
\begin{frame}{Complexity and Practical Considerations}
99+
\begin{itemize}
100+
\item Quantum Complexity: Polynomial in $\log N$.
101+
\item Classical Best Known: Sub-exponential (Number Field Sieve).
102+
\item Quantum Advantage: Exponential speedup over classical algorithms.
103+
\item Practical Challenges: Quantum error correction, large qubit counts.
104+
\end{itemize}
105+
\end{frame}
106+
107+
% Conclusion
108+
\section{Conclusion}
109+
\begin{frame}{Conclusion}
110+
\begin{itemize}
111+
\item Shor's algorithm is a groundbreaking quantum algorithm for factoring.
112+
\item Combines quantum period finding with classical number theory.
113+
\item Highlights the potential of quantum computing to break RSA.
114+
\end{itemize}
115+
\end{frame}
116+
117+
% References
118+
\begin{frame}{References}
119+
\begin{itemize}
120+
\item P. Shor, "Algorithms for Quantum Computation: Discrete Logarithms and Factoring".
121+
\item M. A. Nielsen and I. L. Chuang, \textit{Quantum Computation and Quantum Information}.
122+
\end{itemize}
123+
\end{frame}
124+
125+
\end{document}

0 commit comments

Comments
 (0)