Skip to content

Commit 09340ad

Browse files
committed
Update week6.do.txt
1 parent 5de03df commit 09340ad

File tree

1 file changed

+137
-0
lines changed

1 file changed

+137
-0
lines changed

doc/src/week6/week6.do.txt

Lines changed: 137 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -886,5 +886,142 @@ For the final term we need just to add the action of the Hadamard matrix and we
886886

887887

888888

889+
!split
890+
===== Expectation Value =====
891+
The expectation value of an operator $A$ is given as
892+
893+
!bt
894+
\[
895+
\langle \psi\vert A\vert \psi\rangle.
896+
\]
897+
!et
898+
899+
On a real quantum computer, this value must be estimated through
900+
repeated measurements of the state of the qubits on different
901+
basis. Since the Pauli matrices together with the identity operator $\bm{I}$
902+
form a basis for the $2 \times 2$ matrices ( $\mathcal{M}_{2\times
903+
2}$), any operator in this space can be written in terms of a linear
904+
combination of these operators.
905+
906+
Let $P$ be a Pauli string, then the expectation value of $P$ is given by
907+
!bt
908+
\begin{equation}
909+
\braket{\psi|P|\psi} = \braket{\psi|U^{\dagger}ZU|\psi}.
910+
\end{equation}
911+
!et
912+
913+
One must find a unitary operator $U$ such that $ U^{\dagger}ZU $ is equal to the basis we are trying to measure in the one-qubit case, and $ ZI\ldots I $ in the multiple-qubit case. When the unitary transformation $ U $ is applied to the circuit of which we want to measure the expectation value, the eigenvalues are preserved and the expectation value can be calculated in the new basis.
914+
915+
!split
916+
===== Single qubit Hamiltonian =====
917+
918+
In general, the one qubit Hamiltonian can be written as
919+
!bt
920+
\begin{equation}
921+
H = aI + bX + cY + dZ, \quad a,b,c,d \in \mathbb{C}.
922+
\end{equation}
923+
!et
924+
Given the following relations relating the Pauli $ X $ and $ Y $ operator with the Pauli $ Z $,
925+
!bt
926+
\begin{align}
927+
\label{eq:basis-rotation}
928+
X = HZH, \\
929+
Y = -S^{\dagger}HZHS.
930+
\end{align}
931+
!et
932+
Then the expectation value is
933+
!bt
934+
\begin{align}
935+
\braket{\psi|H|\psi} &= a\braket{\psi|I|\psi} + b \braket{\psi|X|\psi} + c \braket{\psi|Y|\psi} + d \braket{\psi|Z|\psi} \\
936+
&= a \underbrace{\braket{\psi|\psi}}_{1} + b \braket{\psi|HZH|\psi} + c \braket{\psi|HS^{\dagger}ZSH|\psi} + d \braket{\psi|Z|\psi}.
937+
\end{align}
938+
!et
939+
940+
In the case of a single qubit, to rotate the computation basis to
941+
another Pauli basis, we simply apply the $H$ gate for when there is an
942+
$ X $ in the Hamiltonian, and $ S^\dagger$ gate followed by an $ H $
943+
gate when there is a $ Y $-gate.
944+
945+
946+
The computation basis is the Pauli $ Z\underbrace{I \ldots I}_{n-1}$
947+
basis for an $ n $-qubit quantum circuit. When there is more than one
948+
qubit in the system if the operator contains only one non-identity
949+
operator on the first qubit, then a similar strategy applies --- apply
950+
the \texttt{H}-gate or the \texttt{Sdag}-gate followed by \texttt{H}
951+
gate on the first qubit.
952+
953+
In the case where the Pauli string contains more than non-identity, for example, $ZI$ contains only one non-identity operator and $ZZ$ contains two, the \texttt{CNOT} gate must be applied to such qubits to disentangle them. Consider the smallest non-trivial case, the Pauli string $ ZZ $, the unitary transform which rotates the $ ZZ $ basis to the $ ZI $ basis is the $ CNOT_{10} $ gate,
954+
\[
955+
CNOT(1,0) =
956+
\begin{bmatrix}
957+
1 & 0 & 0 & 0 \\
958+
0 & 0 & 0 & 1 \\
959+
0 & 0 & 1 & 0 \\
960+
0 & 1 & 0 & 0 \\
961+
\end{bmatrix} = CNOT(1,0)^{\dagger}, \]
962+
and
963+
\begin{align}
964+
CNOT(1,0)(ZZ)CNOT(1,0) &=
965+
\begin{bmatrix}
966+
1 & 0 & 0 & 0 \\
967+
0 & 0 & 0 & 1 \\
968+
0 & 0 & 1 & 0 \\
969+
0 & 1 & 0 & 0 \\
970+
\end{bmatrix}
971+
\begin{bmatrix}
972+
1 & 0 & 0 & 0 \\
973+
0 & -1 & 0 & 0 \\
974+
0 & 0 & -1 & 0 \\
975+
0 & 0 & 0 & 1 \\
976+
\end{bmatrix}
977+
\begin{bmatrix}
978+
1 & 0 & 0 & 0 \\
979+
0 & 0 & 0 & 1 \\
980+
0 & 0 & 1 & 0 \\
981+
0 & 1 & 0 & 0 \\
982+
\end{bmatrix} \\
983+
&=
984+
\begin{bmatrix}
985+
1 & 0 & 0 & 0 \\
986+
0 & 1 & 0 & 0 \\
987+
0 & 0 & -1 & 0 \\
988+
0 & 0 & 0 & -1 \\
989+
\end{bmatrix} = ZI.
990+
\end{align}
991+
992+
993+
994+
In cases where the non-identity gates are not in the first positions, a series of SWAP gates are used to swap the state of the qubits with neighbouring qubits,
995+
996+
\begin{align}
997+
\label{eq:swap}
998+
SWAP(0,1)(IZ)SWAP(0,1) &=
999+
\begin{bmatrix}
1000+
1 & 0 & 0 & 0 \\
1001+
0 & 0 & 1 & 0 \\
1002+
0 & 1 & 0 & 0 \\
1003+
0 & 0 & 0 & 1 \\
1004+
\end{bmatrix}
1005+
\begin{bmatrix}
1006+
1 & 0 & 0 & 0 \\
1007+
0 & -1 & 0 & 0 \\
1008+
0 & 0 & 1 & 0 \\
1009+
0 & 0 & 0 & -1 \\
1010+
\end{bmatrix}
1011+
\begin{bmatrix}
1012+
1 & 0 & 0 & 0 \\
1013+
0 & 0 & 1 & 0 \\
1014+
0 & 1 & 0 & 0 \\
1015+
0 & 0 & 0 & 1 \\
1016+
\end{bmatrix} \\
1017+
&=
1018+
\begin{bmatrix}
1019+
1 & 0 & 0 & 0 \\
1020+
0 & 1 & 0 & 0 \\
1021+
0 & 0 & -1 & 0 \\
1022+
0 & 0 & 0 & -1 \\
1023+
\end{bmatrix} = ZI.
1024+
\end{align}
8891025

1026+
After the rotation, multiple measurements are taken to estimate the state of the qubits, since the eigenvalues are preserved under unitary transformations, the eigenvalues are the same as that of the $ ZI\ldots I $ state. For an $ n $ qubit system, the states $ \ket{0} $ to $ \ket{2^{n-1}} $ have eigenvalues $ 1 $ and the rest have eigenvalues $ -1 $.
8901027

0 commit comments

Comments
 (0)