You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
One must find a unitary operator $U$ such that $ U^{\dagger}ZU $ is equal to the basis we are trying to measure in the one-qubit case, and $ ZI\ldots I $ in the multiple-qubit case. When the unitary transformation $ U $ is applied to the circuit of which we want to measure the expectation value, the eigenvalues are preserved and the expectation value can be calculated in the new basis.
914
+
915
+
!split
916
+
===== Single qubit Hamiltonian =====
917
+
918
+
In general, the one qubit Hamiltonian can be written as
919
+
!bt
920
+
\begin{equation}
921
+
H = aI + bX + cY + dZ, \quad a,b,c,d \in \mathbb{C}.
922
+
\end{equation}
923
+
!et
924
+
Given the following relations relating the Pauli $ X $ and $ Y $ operator with the Pauli $ Z $,
925
+
!bt
926
+
\begin{align}
927
+
\label{eq:basis-rotation}
928
+
X = HZH, \\
929
+
Y = -S^{\dagger}HZHS.
930
+
\end{align}
931
+
!et
932
+
Then the expectation value is
933
+
!bt
934
+
\begin{align}
935
+
\braket{\psi|H|\psi} &= a\braket{\psi|I|\psi} + b \braket{\psi|X|\psi} + c \braket{\psi|Y|\psi} + d \braket{\psi|Z|\psi} \\
936
+
&= a \underbrace{\braket{\psi|\psi}}_{1} + b \braket{\psi|HZH|\psi} + c \braket{\psi|HS^{\dagger}ZSH|\psi} + d \braket{\psi|Z|\psi}.
937
+
\end{align}
938
+
!et
939
+
940
+
In the case of a single qubit, to rotate the computation basis to
941
+
another Pauli basis, we simply apply the $H$ gate for when there is an
942
+
$ X $ in the Hamiltonian, and $ S^\dagger$ gate followed by an $ H $
943
+
gate when there is a $ Y $-gate.
944
+
945
+
946
+
The computation basis is the Pauli $ Z\underbrace{I \ldots I}_{n-1}$
947
+
basis for an $ n $-qubit quantum circuit. When there is more than one
948
+
qubit in the system if the operator contains only one non-identity
949
+
operator on the first qubit, then a similar strategy applies --- apply
950
+
the \texttt{H}-gate or the \texttt{Sdag}-gate followed by \texttt{H}
951
+
gate on the first qubit.
952
+
953
+
In the case where the Pauli string contains more than non-identity, for example, $ZI$ contains only one non-identity operator and $ZZ$ contains two, the \texttt{CNOT} gate must be applied to such qubits to disentangle them. Consider the smallest non-trivial case, the Pauli string $ ZZ $, the unitary transform which rotates the $ ZZ $ basis to the $ ZI $ basis is the $ CNOT_{10} $ gate,
954
+
\[
955
+
CNOT(1,0) =
956
+
\begin{bmatrix}
957
+
1 & 0 & 0 & 0 \\
958
+
0 & 0 & 0 & 1 \\
959
+
0 & 0 & 1 & 0 \\
960
+
0 & 1 & 0 & 0 \\
961
+
\end{bmatrix} = CNOT(1,0)^{\dagger}, \]
962
+
and
963
+
\begin{align}
964
+
CNOT(1,0)(ZZ)CNOT(1,0) &=
965
+
\begin{bmatrix}
966
+
1 & 0 & 0 & 0 \\
967
+
0 & 0 & 0 & 1 \\
968
+
0 & 0 & 1 & 0 \\
969
+
0 & 1 & 0 & 0 \\
970
+
\end{bmatrix}
971
+
\begin{bmatrix}
972
+
1 & 0 & 0 & 0 \\
973
+
0 & -1 & 0 & 0 \\
974
+
0 & 0 & -1 & 0 \\
975
+
0 & 0 & 0 & 1 \\
976
+
\end{bmatrix}
977
+
\begin{bmatrix}
978
+
1 & 0 & 0 & 0 \\
979
+
0 & 0 & 0 & 1 \\
980
+
0 & 0 & 1 & 0 \\
981
+
0 & 1 & 0 & 0 \\
982
+
\end{bmatrix} \\
983
+
&=
984
+
\begin{bmatrix}
985
+
1 & 0 & 0 & 0 \\
986
+
0 & 1 & 0 & 0 \\
987
+
0 & 0 & -1 & 0 \\
988
+
0 & 0 & 0 & -1 \\
989
+
\end{bmatrix} = ZI.
990
+
\end{align}
991
+
992
+
993
+
994
+
In cases where the non-identity gates are not in the first positions, a series of SWAP gates are used to swap the state of the qubits with neighbouring qubits,
995
+
996
+
\begin{align}
997
+
\label{eq:swap}
998
+
SWAP(0,1)(IZ)SWAP(0,1) &=
999
+
\begin{bmatrix}
1000
+
1 & 0 & 0 & 0 \\
1001
+
0 & 0 & 1 & 0 \\
1002
+
0 & 1 & 0 & 0 \\
1003
+
0 & 0 & 0 & 1 \\
1004
+
\end{bmatrix}
1005
+
\begin{bmatrix}
1006
+
1 & 0 & 0 & 0 \\
1007
+
0 & -1 & 0 & 0 \\
1008
+
0 & 0 & 1 & 0 \\
1009
+
0 & 0 & 0 & -1 \\
1010
+
\end{bmatrix}
1011
+
\begin{bmatrix}
1012
+
1 & 0 & 0 & 0 \\
1013
+
0 & 0 & 1 & 0 \\
1014
+
0 & 1 & 0 & 0 \\
1015
+
0 & 0 & 0 & 1 \\
1016
+
\end{bmatrix} \\
1017
+
&=
1018
+
\begin{bmatrix}
1019
+
1 & 0 & 0 & 0 \\
1020
+
0 & 1 & 0 & 0 \\
1021
+
0 & 0 & -1 & 0 \\
1022
+
0 & 0 & 0 & -1 \\
1023
+
\end{bmatrix} = ZI.
1024
+
\end{align}
889
1025
1026
+
After the rotation, multiple measurements are taken to estimate the state of the qubits, since the eigenvalues are preserved under unitary transformations, the eigenvalues are the same as that of the $ ZI\ldots I $ state. For an $ n $ qubit system, the states $ \ket{0} $ to $ \ket{2^{n-1}} $ have eigenvalues $ 1 $ and the rest have eigenvalues $ -1 $.
0 commit comments