4242 None,
4343 'plans-for-the-week-of-february-24-28-solving-quantum-mechanical-problems'),
4444 ('Readings', 2, None, 'readings'),
45- ('Gates and measurements, reminder from previous two weeks ',
45+ ('States, gates and measurements, reminder from preview lectures ',
4646 2,
4747 None,
48- 'gates-and-measurements-reminder-from-previous-two-weeks'),
48+ 'states-gates-and-measurements-reminder-from-preview-lectures'),
49+ ('Single qubit gates', 2, None, 'single-qubit-gates'),
50+ ('Pauli-$X$ gate', 2, None, 'pauli-x-gate'),
51+ ('Hadamard gate', 2, None, 'hadamard-gate'),
52+ ('Phase Gates', 2, None, 'phase-gates'),
53+ ('The inverse of the $S$-gate',
54+ 2,
55+ None,
56+ 'the-inverse-of-the-s-gate'),
57+ ('Two-qubit gates', 2, None, 'two-qubit-gates'),
58+ ('The SWAP gate', 2, None, 'the-swap-gate'),
59+ ('Pauli Strings', 2, None, 'pauli-strings'),
4960 ('Variational Quantum Eigensolver',
5061 2,
5162 None,
160171 < ul class ="dropdown-menu ">
161172 <!-- navigation toc: --> < li > < a href ="#plans-for-the-week-of-february-24-28-solving-quantum-mechanical-problems " style ="font-size: 80%; "> Plans for the week of February 24-28, Solving quantum mechanical problems</ a > </ li >
162173 <!-- navigation toc: --> < li > < a href ="#readings " style ="font-size: 80%; "> Readings</ a > </ li >
163- <!-- navigation toc: --> < li > < a href ="#gates-and-measurements-reminder-from-previous-two-weeks " style ="font-size: 80%; "> Gates and measurements, reminder from previous two weeks</ a > </ li >
174+ <!-- navigation toc: --> < li > < a href ="#states-gates-and-measurements-reminder-from-preview-lectures " style ="font-size: 80%; "> States, gates and measurements, reminder from preview lectures</ a > </ li >
175+ <!-- navigation toc: --> < li > < a href ="#single-qubit-gates " style ="font-size: 80%; "> Single qubit gates</ a > </ li >
176+ <!-- navigation toc: --> < li > < a href ="#pauli-x-gate " style ="font-size: 80%; "> Pauli-\( X \) gate</ a > </ li >
177+ <!-- navigation toc: --> < li > < a href ="#hadamard-gate " style ="font-size: 80%; "> Hadamard gate</ a > </ li >
178+ <!-- navigation toc: --> < li > < a href ="#phase-gates " style ="font-size: 80%; "> Phase Gates</ a > </ li >
179+ <!-- navigation toc: --> < li > < a href ="#the-inverse-of-the-s-gate " style ="font-size: 80%; "> The inverse of the \( S \)-gate</ a > </ li >
180+ <!-- navigation toc: --> < li > < a href ="#two-qubit-gates " style ="font-size: 80%; "> Two-qubit gates</ a > </ li >
181+ <!-- navigation toc: --> < li > < a href ="#the-swap-gate " style ="font-size: 80%; "> The SWAP gate</ a > </ li >
182+ <!-- navigation toc: --> < li > < a href ="#pauli-strings " style ="font-size: 80%; "> Pauli Strings</ a > </ li >
164183 <!-- navigation toc: --> < li > < a href ="#variational-quantum-eigensolver " style ="font-size: 80%; "> Variational Quantum Eigensolver</ a > </ li >
165184 <!-- navigation toc: --> < li > < a href ="#the-vqe " style ="font-size: 80%; "> The VQE</ a > </ li >
166185 <!-- navigation toc: --> < li > < a href ="#expectation-value-of-hamiltonian " style ="font-size: 80%; "> Expectation value of Hamiltonian</ a > </ li >
@@ -232,8 +251,7 @@ <h2 id="plans-for-the-week-of-february-24-28-solving-quantum-mechanical-problems
232251<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
233252< ol >
234253 < li > Repetition from last week on gates, measurements and one-qubit systems</ li >
235- < li > Introducing the Variational Quantum Eigensolver (VQE) and discussion of project 1</ li >
236- < li > < b > Note on project work:</ b > feel free to collaborate on the projects
254+ < li > Introducing the Variational Quantum Eigensolver (VQE) and discussion of project 1
237255<!-- o <a href="https://youtu.be/" target="_self">Video of lecture to be added</a> -->
238256<!-- o <a href="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2024/NotesFebruary21.pdf" target="_self">Whiteboard notes</a> --> </ li >
239257</ ol >
@@ -250,9 +268,200 @@ <h2 id="readings" class="anchor">Readings </h2>
250268< li > < a href ="https://www.sciencedirect.com/science/article/pii/S0370157322003118?via%3Dihub " target ="_self "> See also the VQE review article by Tilly et al.</ a > </ li >
251269</ ol >
252270<!-- !split -->
253- < h2 id ="gates-and-measurements-reminder-from-previous-two-weeks " class ="anchor "> Gates and measurements, reminder from previous two weeks </ h2 >
271+ < h2 id ="states-gates-and-measurements-reminder-from-preview-lectures " class ="anchor "> States, gates and measurements, reminder from preview lectures </ h2 >
272+
273+ < p > Mathematically, quantum gates are a series of unitary operators in the
274+ operator space $ \mathcal{H} \otimes \mathcal{H}^{*}$ which evolve the
275+ state. The unitary nature preserves the norm of the state vector,
276+ ensuring the probabilities sum to unity. Since not all gates
277+ correspond to an observable, they are not necessarily hermitian.
278+ </ p >
279+
280+ <!-- !split -->
281+ < h2 id ="single-qubit-gates " class ="anchor "> Single qubit gates </ h2 >
282+
283+ < p > The Pauli matrices (and gate operations following therefrom) are defined as</ p >
284+ $$
285+ X \equiv \sigma_x = \begin{pmatrix}
286+ 0 & 1 \\
287+ 1 & 0
288+ \end{pmatrix}, \quad
289+ Y \equiv \sigma_y = \begin{pmatrix}
290+ 0 & -i \\
291+ i & 0
292+ \end{pmatrix}, \quad
293+ Z \equiv \sigma_z = \begin{pmatrix}
294+ 1 & 0 \\
295+ 0 & -1
296+ \end{pmatrix}.
297+ $$
298+
299+
300+ <!-- !split -->
301+ < h2 id ="pauli-x-gate " class ="anchor "> Pauli-\( X \) gate </ h2 >
302+
303+ < p > The Pauli-\( X \) gate is also known as the < b > NOT</ b > gate, which flips the state of the qubit.</ p >
304+ $$
305+ \begin{align}
306+ X\vert 0\rangle &= \vert 1\rangle,
307+ \label{_auto1}\\
308+ X\vert 1\rangle &= \vert 0\rangle.
309+ \label{_auto2}
310+ \end{align}
311+ $$
312+
313+ < p > The Pauli-\( Y \) gate flips the bit and multiplies the phase by $ i $. </ p >
314+ $$
315+ \begin{align}
316+ Y\vert 0\rangle &= i\vert 1\rangle,
317+ \label{_auto3}\\
318+ Y\vert 1\rangle &= -i\vert 0\rangle.
319+ \label{_auto4}
320+ \end{align}
321+ $$
322+
323+ < p > The Pauli-\( Z \) gate multiplies only the phase of \( \vert 1\rangle \) by $ -1 \( .</ p >
324+ $$
325+ \begin{align}
326+ Z\vert 0\rangle &= \vert 0\rangle,
327+ \label{_auto5}\\
328+ Z\vert 1\rangle &= -\vert 1\rangle.
329+ \label{_auto6}
330+ \end{align}
331+ $$
332+
333+ <!-- !split -->
334+ < h2 id ="hadamard-gate " class ="anchor "> Hadamard gate </ h2 >
335+
336+ < p > The Hadamard gate is defined as</ p >
337+ $$
338+ H = \frac{1}{\sqrt{2}} \begin{pmatrix}
339+ 1 & 1 \\
340+ 1 & -1
341+ \end{pmatrix}.
342+ $$
343+
344+ < p > It creates a superposition of the \) \vert 0\rangle $ and $ \vert 1\rangle $ states.</ p >
345+ $$
346+ \begin{align}
347+ H\vert 0\rangle &= \frac{1}{\sqrt{2}} \left( \vert 0\rangle + \vert 1\rangle \right),
348+ \label{_auto7}\\
349+ H\vert 1\rangle &= \frac{1}{\sqrt{2}} \left( \vert 0\rangle - \vert 1\rangle \right).
350+ \label{_auto8}
351+ \end{align}
352+ $$
353+
354+
355+ <!-- !split -->
356+ < h2 id ="phase-gates " class ="anchor "> Phase Gates </ h2 >
357+ < p > The phase gate is usually denoted as \( S \) and is defined as</ p >
358+ $$
359+ \begin{equation}
360+ S = \begin{pmatrix}
361+ 1 & 0 \\
362+ 0 & i
363+ \end{pmatrix}.
364+ \label{_auto9}
365+ \end{equation}
366+ $$
367+
368+ < p > It multiplies only the phase of the $ \vert 1\rangle $ state by $ i $.</ p >
369+ $$
370+ \begin{align}
371+ S\vert 0\rangle &= \vert 0\rangle,
372+ \label{_auto10}\\
373+ S\vert 1\rangle &= i\vert 1\rangle.
374+ \label{_auto11}
375+ \end{align}
376+ $$
377+
378+
379+ <!-- !split -->
380+ < h2 id ="the-inverse-of-the-s-gate " class ="anchor "> The inverse of the \( S \)-gate </ h2 >
381+
382+ < p > The inverse</ p >
383+ $$
384+ \begin{equation}
385+ S^\dagger = \begin{pmatrix}
386+ 1 & 0 \\
387+ 0 & -i
388+ \end{pmatrix}
389+ \label{_auto12}
390+ \end{equation}
391+ $$
254392
255- < p > Material to come here</ p >
393+ < p > is known as the $ S^\dagger$ gate which applies an \( \imath \) phase shift to \( \vert 1\rangle \).</ p >
394+ $$
395+ \begin{align}
396+ S^\dagger\vert 0\rangle &= \vert 0\rangle,
397+ \label{_auto13}\\
398+ S^\dagger\vert 1\rangle &= -i\vert 1\rangle.
399+ \label{_auto14}
400+ \end{align}
401+ $$
402+
403+ <!-- !split -->
404+ < h2 id ="two-qubit-gates " class ="anchor "> Two-qubit gates </ h2 >
405+
406+ < p > The CNOT gate is a two-qubit gate which acts on two qubits, a control qubit and a target qubit. The CNOT gate is defined as</ p >
407+ $$
408+ \begin{equation}
409+ \text{CNOT} = \begin{pmatrix}
410+ 1 & 0 & 0 & 0 \\
411+ 0 & 1 & 0 & 0 \\
412+ 0 & 0 & 0 & 1 \\
413+ 0 & 0 & 1 & 0
414+ \end{pmatrix}.
415+ \label{_auto15}
416+ \end{equation}
417+ $$
418+
419+ < p > It is often used to perform linear entanglement on qubits.</ p >
420+ $$
421+ \begin{align*}
422+ \text{CNOT} \vert 00\rangle &= \vert 00\rangle, \\
423+ \text{CNOT} \vert 01\rangle &= \vert 01\rangle, \\
424+ \text{CNOT} \vert 10\rangle &= \vert 11\rangle, \\
425+ \text{CNOT} \vert 11\rangle &= \vert 10\rangle.
426+ \end{align*}
427+ $$
428+
429+
430+ <!-- !split -->
431+ < h2 id ="the-swap-gate " class ="anchor "> The SWAP gate </ h2 >
432+ < p > The SWAP gate is a two-qubit gate which swaps the state of two qubits. It is defined as</ p >
433+ $$
434+ \begin{equation}
435+ \text{SWAP} = \begin{pmatrix}
436+ 1 & 0 & 0 & 0 \\
437+ 0 & 0 & 1 & 0 \\
438+ 0 & 1 & 0 & 0 \\
439+ 0 & 0 & 0 & 1
440+ \end{pmatrix}.
441+ \label{_auto16}
442+ \end{equation}
443+ $$
444+
445+ $$
446+ \begin{align*}
447+ \text{SWAP}\vert 00\rangle &= \vert 00\rangle, \\
448+ \text{SWAP} \vert 01\rangle &= \vert 10\rangle, \\
449+ \text{SWAP} \vert 10\rangle &= \vert 01\rangle, \\
450+ \text{SWAP} \vert 11\rangle &= \vert 11 \rangle.
451+ \end{align*}
452+ $$
453+
454+
455+ <!-- !split -->
456+ < h2 id ="pauli-strings " class ="anchor "> Pauli Strings </ h2 >
457+ < p > A Pauli string, such as $ XIYZ $ is a tensor product of Pauli matrices acting on different qubits.
458+ The Pauli string $ XIYZ $ is defined as (from qubit one to qubit four, from left to right)
459+ </ p >
460+ $$
461+ XIYZ \equiv X_0 \otimes I_1 \otimes Y_2 \otimes Z_3.
462+ $$
463+
464+ < p > Hamiltonians are often rewritten or decomposed in terms of Pauli string as they can be easily implemented on quantum computers. </ p >
256465
257466<!-- !split -->
258467< h2 id ="variational-quantum-eigensolver " class ="anchor "> Variational Quantum Eigensolver </ h2 >
@@ -366,15 +575,15 @@ <h2 id="expectation-values" class="anchor">Expectation values </h2>
366575$$
367576\begin{align}
368577HS^{\dagger}, & \text{if} \ \sigma = Y,
369- \label{_auto1 }
578+ \label{_auto17 }
370579\end{align}
371580$$
372581
373582< p > and</ p >
374583$$
375584\begin{align}
376585I, & \text{if} \ \sigma = Z.
377- \label{_auto2 }
586+ \label{_auto18 }
378587\end{align}
379588$$
380589
@@ -452,7 +661,7 @@ <h2 id="arbitrary-pauli-gate" class="anchor">Arbitrary Pauli gate </h2>
452661&=\langle\phi\vert\left(\sum_{x\in\{0,1\}}(-1)^x\vert x\rangle\langle x\vert\right)\vert\phi\rangle \nonumber \\
453662&=\sum_{x\in\{0,1\}}(-1)^x\vert\langle x\vert \phi\rangle\vert^2\nonumber \\
454663&=\sum_{x\in\{0,1\}}(-1)^xP(\vert \phi\rangle\to\vert x\rangle),
455- \label{_auto3 }
664+ \label{_auto19 }
456665\end{align}
457666$$
458667
@@ -518,7 +727,7 @@ <h2 id="which-gives-us" class="anchor">Which gives us </h2>
518727\\
519728&=
520729\sum_{x\in\{0,1\}^n}(-1)^{\sum_{p\in Q}x_p}P(\vert \phi\rangle\to\vert x\rangle),
521- \label{_auto4 }
730+ \label{_auto20 }
522731\end{align}
523732$$
524733
@@ -608,15 +817,15 @@ <h2 id="rewriting-the-hamiltonian" class="anchor">Rewriting the Hamiltonian </h2
608817$$
609818\begin{equation}
610819 H_0\vert 0 \rangle =E_1\vert 0 \rangle,
611- \label{_auto5 }
820+ \label{_auto21 }
612821\end{equation}
613822$$
614823
615824< p > and</ p >
616825$$
617826\begin{equation}
618827 H_0\vert 1\rangle =E_2\vert 1\rangle,
619- \label{_auto6 }
828+ \label{_auto22 }
620829\end{equation}
621830$$
622831
0 commit comments