Skip to content

Commit 0838260

Browse files
committed
Update week6.do.txt
1 parent 44ca651 commit 0838260

File tree

1 file changed

+19
-19
lines changed

1 file changed

+19
-19
lines changed

doc/src/week6/week6.do.txt

Lines changed: 19 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -248,14 +248,14 @@ eigensolver is based on the variational principle:
248248
!split
249249
===== Rayleigh-Ritz variational principle =====
250250

251-
The Rayleigh-Ritz variational principle states that for a given
252-
Hamiltonian $H$, the expectation value of a trial state or
253-
just ansatz $\vert \psi \rangle$ puts a lower bound on the ground state
254-
energy $E_0$.
251+
Out starting point is the Rayleigh-Ritz variational principle states
252+
that for a given Hamiltonian $H$, the expectation value of a trial
253+
state or just ansatz $\vert \psi \rangle$ puts a lower bound on the
254+
ground state energy $E_0$.
255255

256256
!bt
257257
\[
258-
\frac{\langle \psi \vert H\vert \psi \rangle}{\langle \psi \vert \psi \rangle} \geq E_0.
258+
\frac{\langle \psi \vert \mathcal{H}\vert \psi \rangle}{\langle \psi \vert \psi \rangle} \geq E_0.
259259
\]
260260
!et
261261

@@ -269,16 +269,16 @@ $\boldsymbol{\theta} = (\theta_1, \ldots, \theta_M)$ are the $M$
269269
optimization parameters.
270270

271271
!split
272-
===== Expectation value of Hamiltonian =====
272+
===== Expectation value of Hamiltonian and the variational principle =====
273273

274-
The expectation value of a Hamiltonian $H$ in a state
274+
The expectation value of a Hamiltonian $\mathcal{H}$ in a state
275275
$|\psi(\theta)\rangle$ parameterized by a set of angles $\theta$, is
276276
always greater than or equal to the minimum eigen-energy $E_0$. To see
277-
this, let $|n\rangle$ be the eigenstates of $H$, that is
277+
this, let $|n\rangle$ be the eigenstates of $\mathcal{H}$, that is
278278

279279
!bt
280280
\[
281-
H|n\rangle=E_n|n\rangle.
281+
\mathcal{H}|n\rangle=E_n|n\rangle.
282282
\]
283283
!et
284284

@@ -293,18 +293,18 @@ We can then expand our state $|\psi(\theta)\rangle$ in terms of the eigenstates
293293
|\psi(\theta)\rangle=\sum_nc_n|n\rangle,
294294
\]
295295
!et
296-
and plug this into the expectation value to yield
296+
and insert this in the expression for the expectation value (note that we drop the denominator in the Rayleigh-Ritz ratio)
297297
!bt
298298
\[
299-
\langle\psi(\theta)|H|\psi(\theta)\rangle=\sum_{nm}c^*_mc_n\langle m|H|n \rangle
300-
=\sum_{nm}c^*_mc_nE_n\langle m|n \rangle=\sum_{nm}\delta_{nm}c^*_mc_nE_n=\sum_{n}|c_n|^2E_n \geq E_0\sum_{n}|c_n|^2=E_0,
299+
\langle\psi(\theta)\vert \mathcal{H}\vert\psi(\theta)\rangle=\sum_{nm}c^*_mc_n\langle m\vert\mathcal{H}\vertn \rangle
300+
=\sum_{nm}c^*_mc_nE_n\langle m\vert n \rangle=\sum_{nm}\delta_{nm}c^*_mc_nE_n=\sum_{n}\vert c_n\vert^2E_n \geq E_0\sum_{n}\vert c_n\vert^2=E_0,
301301
\]
302302
!et
303303
which implies that we can minimize over the set of angles $\theta$ and arrive at the ground state energy $E_0$
304304

305305
!bt
306306
\[
307-
\min_\theta \ \langle\psi(\theta)|H|\psi(\theta)\rangle=E_0.
307+
\min_\theta \ \langle\psi(\theta)\vert \mathcal{H}\vert \psi(\theta)\rangle=E_0.
308308
\]
309309
!et
310310

@@ -315,20 +315,20 @@ which implies that we can minimize over the set of angles $\theta$ and arrive at
315315
Using this fact, the VQE algorithm can be broken down into the following steps
316316
o Prepare the variational state $|\psi(\theta)\rangle$ on a quantum computer.
317317
o Measure this circuit in various bases and send these measurements to a classical computer
318-
o The classical computer post-processes the measurement data to compute the expectation value $\langle\psi(\theta)|H|\psi(\theta)\rangle$
318+
o The classical computer post-processes the measurement data to compute the expectation value $\langle\psi(\theta)\vert \mathcal{H}\vert \psi(\theta)\rangle$
319319
o The classical computer varies the parameters $\theta$ according to a classical minimization algorithm and sends them back to the quantum computer which runs step 1 again.
320320

321321
This loop continues until the classical optimization algorithm
322322
terminates which results in a set of angles $\theta_{\text{min}}$ that
323323
characterize the ground state $|\phi(\theta_{\text{min}})\rangle$ and
324324
an estimate for the ground state energy
325-
$\langle\psi(\theta_{\text{min}})|H|\psi(\theta_{\text{min}})\rangle$.
325+
$\langle\psi(\theta_{\text{min}})\vert\mathcal{H}\vert\psi(\theta_{\text{min}})\rangle$.
326326

327327

328328
!split
329329
===== VQE overview =====
330330

331-
FIGURE: [figures/vqe.png, width=700 frac=0.9]
331+
FIGURE: [figures/vqe.png, width=700 frac=1.0]
332332

333333

334334

@@ -337,11 +337,11 @@ FIGURE: [figures/vqe.png, width=700 frac=0.9]
337337

338338
To have any flexibility in the
339339
ansatz $\vert \psi\rangle$, we need to allow for a given parametrization. The most
340-
common approach is the so-called $R_y$ ansatz, where we apply chained
341-
operations of rotating around the $y$-axis by $\boldsymbol{\theta} =
340+
common approach is to employ the so-called rotation operations guven by $R_x$, $R_z$ and $R_y$, where we apply chained
341+
operations of rotating around the various axes by $\boldsymbol{\theta} =
342342
(\theta_1,\ldots,\theta_Q)$ of the Bloch sphere and CNOT operations.
343343

344-
Applications of $y$ rotations
344+
Applications of of say the $y$-rotation
345345
specifically ensures that our coefficients always remain real, which
346346
often is satisfactory when dealing with many-body systems.
347347

0 commit comments

Comments
 (0)