Skip to content

Commit 44ca651

Browse files
committed
update
1 parent 9180cc9 commit 44ca651

File tree

8 files changed

+576
-753
lines changed

8 files changed

+576
-753
lines changed

doc/pub/week6/html/week6-bs.html

Lines changed: 53 additions & 70 deletions
Original file line numberDiff line numberDiff line change
@@ -372,7 +372,7 @@ <h2 id="readings" class="anchor">Readings </h2>
372372
<h2 id="states-gates-and-measurements-reminder-from-preview-lectures" class="anchor">States, gates and measurements, reminder from preview lectures </h2>
373373

374374
<p>Mathematically, quantum gates are a series of unitary operators in the
375-
operator space $ \mathcal{H} \otimes \mathcal{H}^{*}$ which evolve the
375+
operator space defined by our Hamiltonian \( \mathcal{H} \) and operators \( \mathcal{O} \) which evolve a given initial
376376
state. The unitary nature preserves the norm of the state vector,
377377
ensuring the probabilities sum to unity. Since not all gates
378378
correspond to an observable, they are not necessarily hermitian.
@@ -403,32 +403,26 @@ <h2 id="pauli-x-gate" class="anchor">Pauli-\( X \) gate </h2>
403403

404404
<p>The Pauli-\( X \) gate is also known as the <b>NOT</b> gate, which flips the state of the qubit.</p>
405405
$$
406-
\begin{align}
407-
X\vert 0\rangle &= \vert 1\rangle,
408-
\label{_auto1}\\
406+
\begin{align*}
407+
X\vert 0\rangle &= \vert 1\rangle, \\
409408
X\vert 1\rangle &= \vert 0\rangle.
410-
\label{_auto2}
411-
\end{align}
409+
\end{align*}
412410
$$
413411

414412
<p>The Pauli-\( Y \) gate flips the bit and multiplies the phase by $ i $. </p>
415413
$$
416-
\begin{align}
417-
Y\vert 0\rangle &= i\vert 1\rangle,
418-
\label{_auto3}\\
414+
\begin{align*}
415+
Y\vert 0\rangle &= i\vert 1\rangle, \\
419416
Y\vert 1\rangle &= -i\vert 0\rangle.
420-
\label{_auto4}
421-
\end{align}
417+
\end{align*}
422418
$$
423419

424420
<p>The Pauli-\( Z \) gate multiplies only the phase of \( \vert 1\rangle \) by $ -1 \( .</p>
425421
$$
426-
\begin{align}
427-
Z\vert 0\rangle &= \vert 0\rangle,
428-
\label{_auto5}\\
422+
\begin{align*}
423+
Z\vert 0\rangle &= \vert 0\rangle, \\
429424
Z\vert 1\rangle &= -\vert 1\rangle.
430-
\label{_auto6}
431-
\end{align}
425+
\end{align*}
432426
$$
433427

434428
<!-- !split -->
@@ -446,34 +440,30 @@ <h2 id="hadamard-gate" class="anchor">Hadamard gate </h2>
446440
$$
447441
\begin{align}
448442
H\vert 0\rangle &= \frac{1}{\sqrt{2}} \left( \vert 0\rangle + \vert 1\rangle \right),
449-
\label{_auto7}\\
443+
\label{_auto1}\\
450444
H\vert 1\rangle &= \frac{1}{\sqrt{2}} \left( \vert 0\rangle - \vert 1\rangle \right).
451-
\label{_auto8}
445+
\label{_auto2}
452446
\end{align}
453447
$$
454448

449+
<p>Note that we will use \( H \) as symbol for the Hadamard gate while we will reserve the notation \( \mathcal{H} \) for a given Hamiltonian.</p>
455450

456451
<!-- !split -->
457452
<h2 id="phase-gates" class="anchor">Phase Gates </h2>
458453
<p>The phase gate is usually denoted as \( S \) and is defined as</p>
459454
$$
460-
\begin{equation}
461455
S = \begin{pmatrix}
462456
1 & 0 \\
463457
0 & i
464458
\end{pmatrix}.
465-
\label{_auto9}
466-
\end{equation}
467459
$$
468460

469461
<p>It multiplies only the phase of the $ \vert 1\rangle $ state by $ i $.</p>
470462
$$
471-
\begin{align}
472-
S\vert 0\rangle &= \vert 0\rangle,
473-
\label{_auto10}\\
463+
\begin{align*}
464+
S\vert 0\rangle &= \vert 0\rangle, \\
474465
S\vert 1\rangle &= i\vert 1\rangle.
475-
\label{_auto11}
476-
\end{align}
466+
\end{align*}
477467
$$
478468

479469

@@ -482,39 +472,31 @@ <h2 id="the-inverse-of-the-s-gate" class="anchor">The inverse of the \( S \)-ga
482472

483473
<p>The inverse</p>
484474
$$
485-
\begin{equation}
486475
S^\dagger = \begin{pmatrix}
487476
1 & 0 \\
488477
0 & -i
489478
\end{pmatrix}
490-
\label{_auto12}
491-
\end{equation}
492479
$$
493480

494481
<p>is known as the $ S^\dagger$ gate which applies an \( \imath \) phase shift to \( \vert 1\rangle \).</p>
495482
$$
496-
\begin{align}
497-
S^\dagger\vert 0\rangle &= \vert 0\rangle,
498-
\label{_auto13}\\
483+
\begin{align*}
484+
S^\dagger\vert 0\rangle &= \vert 0\rangle, \\
499485
S^\dagger\vert 1\rangle &= -i\vert 1\rangle.
500-
\label{_auto14}
501-
\end{align}
486+
\end{align*}
502487
$$
503488

504489
<!-- !split -->
505490
<h2 id="two-qubit-gates" class="anchor">Two-qubit gates </h2>
506491

507492
<p>The CNOT gate is a two-qubit gate which acts on two qubits, a control qubit and a target qubit. The CNOT gate is defined as</p>
508493
$$
509-
\begin{equation}
510494
\text{CNOT} = \begin{pmatrix}
511495
1 & 0 & 0 & 0 \\
512496
0 & 1 & 0 & 0 \\
513497
0 & 0 & 0 & 1 \\
514498
0 & 0 & 1 & 0
515499
\end{pmatrix}.
516-
\label{_auto15}
517-
\end{equation}
518500
$$
519501

520502
<p>It is often used to perform linear entanglement on qubits.</p>
@@ -532,15 +514,12 @@ <h2 id="two-qubit-gates" class="anchor">Two-qubit gates </h2>
532514
<h2 id="the-swap-gate" class="anchor">The SWAP gate </h2>
533515
<p>The SWAP gate is a two-qubit gate which swaps the state of two qubits. It is defined as</p>
534516
$$
535-
\begin{equation}
536517
\text{SWAP} = \begin{pmatrix}
537518
1 & 0 & 0 & 0 \\
538519
0 & 0 & 1 & 0 \\
539520
0 & 1 & 0 & 0 \\
540521
0 & 0 & 0 & 1
541522
\end{pmatrix}.
542-
\label{_auto16}
543-
\end{equation}
544523
$$
545524

546525
$$
@@ -555,6 +534,7 @@ <h2 id="the-swap-gate" class="anchor">The SWAP gate </h2>
555534

556535
<!-- !split -->
557536
<h2 id="pauli-strings" class="anchor">Pauli Strings </h2>
537+
558538
<p>A Pauli string, such as $ XIYZ $ is a tensor product of Pauli matrices acting on different qubits.
559539
The Pauli string $ XIYZ $ is defined as (from qubit one to qubit four, from left to right)
560540
</p>
@@ -568,39 +548,42 @@ <h2 id="pauli-strings" class="anchor">Pauli Strings </h2>
568548
<h2 id="variational-quantum-eigensolver" class="anchor">Variational Quantum Eigensolver </h2>
569549

570550
<p>One initial algorithm to estimate the eigenenergies of a quantum
571-
Hamiltonian was <a href="https://qiskit.org/textbook/ch-algorithms/quantum-phase-estimation.html" target="_self">quantum phase estimation</a>. In it, one
572-
encodes the eigenenergies, one binary bit at a time (up to \( n \) bits),
573-
into the complex phases of the quantum states of the Hilbert space for
574-
\( n \) qubits. It does this by applying powers of controlled unitary
575-
evolution operators to a quantum state that can be expanded in terms
576-
of the Hamiltonian's eigenvectors of interest. The eigenenergies are
577-
encoded into the complex phases in such a way that taking the inverse
578-
quantum Fourier transformation (see Hundt sections 6.1-6.2) of the states into which the
579-
eigen-energies are encoded results in a measurement probability
580-
distribution that has peaks around the bit strings that represent a
581-
binary fraction which corresponds to the eigen-energies of the quantum
582-
state acted upon by the controlled unitary operators.
551+
Hamiltonian was <a href="https://qiskit.org/textbook/ch-algorithms/quantum-phase-estimation.html" target="_self">quantum phase
552+
estimation</a>. In
553+
it, one encodes the eigenenergies, one binary bit at a time (up to \( n \)
554+
bits), into the complex phases of the quantum states of the Hilbert
555+
space for \( n \) qubits. It does this by applying powers of controlled
556+
unitary evolution operators to a quantum state that can be expanded in
557+
terms of the Hamiltonian's eigenvectors of interest. The eigenenergies
558+
are encoded into the complex phases in such a way that taking the
559+
inverse quantum Fourier transformation (see Hundt sections 6.1-6.2) of
560+
the states into which the eigen-energies are encoded results in a
561+
measurement probability distribution that has peaks around the bit
562+
strings that represent a binary fraction which corresponds to the
563+
eigen-energies of the quantum state acted upon by the controlled
564+
unitary operators.
583565
</p>
584566

585567
<!-- !split -->
586568
<h2 id="the-vqe" class="anchor">The VQE </h2>
587569

588-
<p>While quantum
589-
phase estimation (QPE) is provably efficient, non-hybrid, and
590-
non-variational, the number of qubits and length of circuits required
591-
is too great for our NISQ era quantum computers. Thus, QPE is only
592-
efficiently applicable to large, fault-tolerant quantum computers that
593-
likely won't exist in the near, but the far future.
570+
<p>While quantum phase estimation (QPE) is provably efficient,
571+
non-hybrid, and non-variational, the number of qubits and length of
572+
circuits required is too great for our NISQ era quantum
573+
computers. Thus, QPE is only efficiently applicable to large,
574+
fault-tolerant quantum computers that likely won't exist in the near,
575+
but the far future.
594576
</p>
595577

596578
<p>Therefore, a different algorithm for finding the eigen-energies of a
597579
quantum Hamiltonian was put forth in 2014 called the variational
598-
quantum eigensolver, commonly referred to as <a href="https://arxiv.org/abs/2111.05176" target="_self">VQE</a>. The
599-
algorithm is hybrid, meaning that it requires the use of both a
600-
quantum computer and a classical computer. It is also variational,
601-
meaning that it relies, ultimately, on solving an optimization problem
602-
by varying parameters and thus is not as deterministic as QPE. The
603-
variational quantum eigensolver is based on the variational principle:
580+
quantum eigensolver, commonly referred to as
581+
<a href="https://arxiv.org/abs/2111.05176" target="_self">VQE</a>. The algorithm is hybrid,
582+
meaning that it requires the use of both a quantum computer and a
583+
classical computer. It is also variational, meaning that it relies,
584+
ultimately, on solving an optimization problem by varying parameters
585+
and thus is not as deterministic as QPE. The variational quantum
586+
eigensolver is based on the variational principle:
604587
</p>
605588

606589
<!-- !split -->
@@ -846,15 +829,15 @@ <h2 id="expectation-values" class="anchor">Expectation values </h2>
846829
$$
847830
\begin{align}
848831
HS^{\dagger}, & \text{if} \ \sigma = Y,
849-
\label{_auto17}
832+
\label{_auto3}
850833
\end{align}
851834
$$
852835

853836
<p>and</p>
854837
$$
855838
\begin{align}
856839
I, & \text{if} \ \sigma = Z.
857-
\label{_auto18}
840+
\label{_auto4}
858841
\end{align}
859842
$$
860843

@@ -932,7 +915,7 @@ <h2 id="arbitrary-pauli-gate" class="anchor">Arbitrary Pauli gate </h2>
932915
&=\langle\phi\vert\left(\sum_{x\in\{0,1\}}(-1)^x\vert x\rangle\langle x\vert\right)\vert\phi\rangle \nonumber \\
933916
&=\sum_{x\in\{0,1\}}(-1)^x\vert\langle x\vert \phi\rangle\vert^2\nonumber \\
934917
&=\sum_{x\in\{0,1\}}(-1)^xP(\vert \phi\rangle\to\vert x\rangle),
935-
\label{_auto19}
918+
\label{_auto5}
936919
\end{align}
937920
$$
938921

@@ -998,7 +981,7 @@ <h2 id="which-gives-us" class="anchor">Which gives us </h2>
998981
\\
999982
&=
1000983
\sum_{x\in\{0,1\}^n}(-1)^{\sum_{p\in Q}x_p}P(\vert \phi\rangle\to\vert x\rangle),
1001-
\label{_auto20}
984+
\label{_auto6}
1002985
\end{align}
1003986
$$
1004987

@@ -1099,15 +1082,15 @@ <h2 id="non-interacting-solution" class="anchor">Non-interacting solution </h2>
10991082
$$
11001083
\begin{equation}
11011084
H_0\vert 0 \rangle =E_1\vert 0 \rangle,
1102-
\label{_auto21}
1085+
\label{_auto7}
11031086
\end{equation}
11041087
$$
11051088

11061089
<p>and</p>
11071090
$$
11081091
\begin{equation}
11091092
H_0\vert 1\rangle =E_2\vert 1\rangle,
1110-
\label{_auto22}
1093+
\label{_auto8}
11111094
\end{equation}
11121095
$$
11131096

0 commit comments

Comments
 (0)