๐ Learn Arrays โข Slice โข Reshape โข Analyze
- Project Overview
- Skills Demonstrated
- Technical Implementation
- Key Business Insights Discovered
- Visualizations Created
- Advanced Python Techniques Demonstrated
- Business Value Demonstrated
- Quick Access
- Author
This beginner-friendly NumPy project focuses on:
โ๏ธ NumPy array creation
โ๏ธ Slicing, indexing & reshaping
โ๏ธ Vectorized operations for performance
โ๏ธ Boolean conditions for filtering
๐ A portfolio-ready project for Python, Data Analytics & Machine Learning beginners.
| Category | Skills |
|---|---|
| Python Data Handling | Arrays, slicing, transformation |
| Data Filtering | Boolean selection |
| Data Analysis | Shape, size & output comparison |
| Performance Optimization | Vectorization vs loops |
| GitHub Documentation | Professional formatting |
flowchart TD
A[Start] --> B[Create NumPy Array]
B --> C[Check Shape & Size]
C --> D[Slice Required Elements]
D --> E[Reshape into Column Matrix]
E --> F[Apply Vectorized Operations]
F --> G[Filter Values using Condition]
G --> H[Print Output & Analyze]
import numpy as np
array_1 = np.array([10, 20, 30, 40, 50])
print("Original Array:", array_1)
print("Shape:", array_1.shape)
print("Size:", array_1.size)
print("Sliced Array:", array_1[1:4])
reshaped_array = array_1.reshape(5, 1)
print("\nReshaped Array (5x1):\n", reshaped_array)
multiplied_array = array_1 * 2
print("\nArray after Multiplying by 2:", multiplied_array)
filtered_array = array_1[array_1 > 25]
print("\nValues greater than 25:", filtered_array)Original Array: [10 20 30 40 50]
Shape: (5,)
Size: 5
Sliced Array: [20 30 40]
Reshaped Array (5x1):
[[10]
[20]
[30]
[40]
[50]]
Array after Multiplying by 2: [20 40 60 80 100]
Values greater than 25: [30 40 50]
| Insight | Practical Value |
|---|---|
| Vectorization is faster & scalable | Reduces execution time & cost |
| Boolean filtering extracts relevant data | Useful in fraud detection & data cleansing |
| Reshaping supports ML-ready data | Better training inputs for models |
| Minimal code = maintainable pipelines | Efficient production analytics |
| Asset | Purpose |
|---|---|
| README Banner | Visual project identity |
| PDF/PPT visual documentation | Strong portfolio presentation |
๐ Folder Location:
Documentation/NumPy_Project01_Portfolio_Pack/
- Vectorized computation
- Efficient memory usage
- Conditional filtering
- Data restructuring for ML
- Clean output formatting
โ Faster computation than Excel-like operations
โ Reliable filtered data for business decisions
โ Smooth integration with ML pipelines
โ Supports cost-efficient analytics workflows
๐ Key Observations:
- Array indexing & slicing se hum specific range ke values nikal sakte hain
- Reshaping se 1D array ko matrix form me convert karna easy hai
- Vectorized operations har element par one-shot me apply ho jate hain
- Boolean filter se sirf condition-match hone wale elements milte hain
- โก Vectorization > Loops for numerical operations โ faster & cleaner code
- ๐ Arrays ko easily reshape kiya ja sakta hai according to model/input needs
- ๐งน Boolean filtering se data cleaning & subsetting bahut asaan ho jata hai
- ๐ Yehi concepts aage chal kar Pandas, ML models & data pipelines me use hote hain
NumPy arrays:
- ๐น Fast, flexible & memory-efficient hote hain
- ๐น Real-world data processing ke liye backbone ka kaam karte hain
- ๐น Is project ne aapko array creation โ manipulation โ analysis ka poora flow dikhaya
Yeh project Data Analytics & Machine Learning ke liye ek perfect starting point hai ๐
- ๐ Visualize results using Matplotlib / Seaborn
- ๐งฎ Add more complex operations (mean, std, variance, etc.)
- ๐ Work with 2D / 3D arrays (matrices & tensors)
- ๐ง Link this with a small ML model as next step
-
๐ Complete Project Overview (PDF): ๐ Open PDF on GitHub
-
๐ฆ NumPy Project 01 Portfolio Pack: ๐ [Documentation + PPT + Images](https://github.com/Ashwin18-Of
๐ Full Report PDF:
Documentation/Complete Project Overview.pdf
๐ฆ Portfolio Pack (PDF + PPT + Images):
Documentation/NumPy_Project01_Portfolio_Pack/
Ashwin Panbude
๐ India | Data Analyst
๐ LinkedIn Profile:
www.linkedin.com/in/ashwin-panbude-27b824253
If this helped you ๐
โจ Please Star โญ the repo โ it motivates more open-source contributions!
โSmall consistent projects build a strong Data Analyst mindset.โ ๐
