@@ -48,7 +48,7 @@ The `CSpeciesSolver` object in SU2 solves the controlling variables and passive
4848
4949$$
5050\begin{equation}
51- \frac{\partial \rho \mathcal{Y}}{\partial t} + \nabla\cdot(\rho\vec{u}\mathcal{Y}) - \nabla\cdot\left(\rho D\nabla\mathcal{Y}\right) = \rho\ dot{\omega}_\mathcal{Y}
51+ \frac{\partial \rho \mathcal{Y}}{\partial t} + \nabla\cdot(\rho\vec{u}\mathcal{Y}) - \nabla\cdot\left(\rho D\nabla\mathcal{Y}\right) = \dot{\omega}_\mathcal{Y}
5252\end{equation}
5353$$
5454
6060
6161$$
6262\begin{equation}
63- \frac{\partial \rho Y_j}{\partial t} + \nabla\cdot(\rho\vec{u}Y_j) - \nabla\cdot\left(\rho D\nabla Y_j\right) = \rho\ dot{\omega}^+ + \rho \dot{\omega}^- Y_j
63+ \frac{\partial \rho Y_j}{\partial t} + \nabla\cdot(\rho\vec{u}Y_j) - \nabla\cdot\left(\rho D\nabla Y_j\right) = \dot{\omega}^+ + \dot{\omega}^- Y_j
6464\end{equation}
6565$$
6666
67672 . partially or non-premixed, no preferential diffusion:
6868
6969$$
7070\begin{equation}
71- \frac{\partial \rho \mathcal{Y}}{\partial t} + \nabla\cdot(\rho\vec{u}\mathcal{Y}) - \nabla\cdot\left(\rho D\nabla\mathcal{Y}\right) = \rho\ dot{\omega}_\mathcal{Y}
71+ \frac{\partial \rho \mathcal{Y}}{\partial t} + \nabla\cdot(\rho\vec{u}\mathcal{Y}) - \nabla\cdot\left(\rho D\nabla\mathcal{Y}\right) = \dot{\omega}_\mathcal{Y}
7272\end{equation}
7373$$
7474
8080
8181$$
8282\begin{equation}
83- \frac{\partial \rho Z}{\partial t} + \nabla\cdot(\rho\vec{u}Z) - \nabla\cdot\left(\rho D\nabla Z\right) = \rho\ dot{\omega}_\mathcal{Y}
83+ \frac{\partial \rho Z}{\partial t} + \nabla\cdot(\rho\vec{u}Z) - \nabla\cdot\left(\rho D\nabla Z\right) = \dot{\omega}_\mathcal{Y}
8484\end{equation}
8585$$
8686
8787$$
8888\begin{equation}
89- \frac{\partial \rho Y_j}{\partial t} + \nabla\cdot(\rho\vec{u}Y_j) - \nabla\cdot\left(\rho D\nabla Y_j\right) = \rho\ dot{\omega}^+ + \rho \dot{\omega}^- Y_j
89+ \frac{\partial \rho Y_j}{\partial t} + \nabla\cdot(\rho\vec{u}Y_j) - \nabla\cdot\left(\rho D\nabla Y_j\right) = \dot{\omega}^+ + \dot{\omega}^- Y_j
9090\end{equation}
9191$$
9292
93933 . pre-mixed, partially pre-mixed, non-premixed, with preferential diffusion:
9494
9595$$
9696\begin{equation}
97- \frac{\partial \rho \mathcal{Y}}{\partial t} + \nabla\cdot(\rho\vec{u}\mathcal{Y}) - \nabla\cdot\left(\rho D\nabla\beta_\mathcal{Y}\right) = \rho\ dot{\omega}_\mathcal{Y}
97+ \frac{\partial \rho \mathcal{Y}}{\partial t} + \nabla\cdot(\rho\vec{u}\mathcal{Y}) - \nabla\cdot\left(\rho D\nabla\beta_\mathcal{Y}\right) = \dot{\omega}_\mathcal{Y}
9898\end{equation}
9999$$
100100
112112
113113$$
114114\begin{equation}
115- \frac{\partial \rho Y_j}{\partial t} + \nabla\cdot(\rho\vec{u}Y_j) - \nabla\cdot\left(\rho D\nabla Y_j\right) = \rho\ dot{\omega}^+ + \rho \dot{\omega}^- Y_j
115+ \frac{\partial \rho Y_j}{\partial t} + \nabla\cdot(\rho\vec{u}Y_j) - \nabla\cdot\left(\rho D\nabla Y_j\right) = \dot{\omega}^+ + \dot{\omega}^- Y_j
116116\end{equation}
117117$$
118118
@@ -175,7 +175,7 @@ Pre-mixed combustion of reactants with high hydrogen content at lean conditions
175175
176176$$
177177\begin{equation}
178- \frac{\partial \rho \mathcal{Y}}{\partial t} + \nabla\cdot(\rho\vec{u}\mathcal{Y}) - \nabla\cdot\left(D\nabla\beta_\mathcal{Y}\right) = \rho\ dot{\omega}_\mathcal{Y}
178+ \frac{\partial \rho \mathcal{Y}}{\partial t} + \nabla\cdot(\rho\vec{u}\mathcal{Y}) - \nabla\cdot\left(D\nabla\beta_\mathcal{Y}\right) = \dot{\omega}_\mathcal{Y}
179179\end{equation}
180180$$
181181
0 commit comments