|
| 1 | +\documentclass{ximera} |
| 2 | +\input{../preamble.tex} |
| 3 | + |
| 4 | + \title{Review for the Final Exam} \license{CC BY-NC-SA 4.0} |
| 5 | + |
| 6 | +\begin{document} |
| 7 | + |
| 8 | +\begin{abstract} |
| 9 | + \end{abstract} |
| 10 | +\maketitle |
| 11 | + |
| 12 | +\begin{onlineOnly} |
| 13 | +\section*{Review Problems for the Final Exam} |
| 14 | +\end{onlineOnly} |
| 15 | + |
| 16 | +\begin{exercise} |
| 17 | + Suppose $A$ is a $3\times 5$ matrix, and $\text{rank}(A)=2$. |
| 18 | + |
| 19 | + \begin{enumerate} |
| 20 | + \item Which of the following are possibilities for a non-zero vector $\vec{b}$? (Check all that apply.) |
| 21 | + |
| 22 | + \begin{selectAll} |
| 23 | + \choice{$A\vec{x}=\vec{b}$ has a unique solution.} |
| 24 | + \choice[correct]{$A\vec{x}=\vec{b}$ has infinitely many solutions.} |
| 25 | + \choice[correct]{$A\vec{x}=\vec{b}$ has no solutions.} |
| 26 | + \end{selectAll} |
| 27 | +\item Find the following dimensions. |
| 28 | +$$\text{dim}(\text{null}(A))=\answer{3},\quad \text{dim}(\text{col}(A))=\answer{2},\quad \text{dim}(\text{row}(A))=\answer{2}$$ |
| 29 | + |
| 30 | + \item Let $T$ be a linear transformation induced by $A$. What is true about $T$? (Check all that apply.) |
| 31 | + |
| 32 | + \begin{selectAll} |
| 33 | + \choice[correct]{$T:\RR^5\rightarrow \RR^3$} |
| 34 | + \choice{$T:\RR^3\rightarrow \RR^5$} |
| 35 | + \choice{$\vec{0}$ is the ONLY vector that maps to $\vec{0}$.} |
| 36 | + \choice[correct]{Infinitely many vectors map to $\vec{0}$.} |
| 37 | + \choice[correct]{$\text{dim}(\text{im}(T))=2$} |
| 38 | + \choice{$\text{dim}(\text{im}(T))=3$} |
| 39 | + \choice{$\text{dim}(\text{im}(T))=5$} |
| 40 | + \end{selectAll} |
| 41 | + \end{enumerate} |
| 42 | +\end{exercise} |
| 43 | + |
| 44 | +\begin{exercise} |
| 45 | + Suppose $A$ is a $7\times 2$ matrix, and $\text{rank}(A)=2$. |
| 46 | + \begin{enumerate} |
| 47 | + \item Which of the following are possibilities for a non-zero vector $\vec{b}$? (Check all that apply.) |
| 48 | + |
| 49 | + \begin{selectAll} |
| 50 | + \choice[correct]{$A\vec{x}=\vec{b}$ has a unique solution.} |
| 51 | + \choice{$A\vec{x}=\vec{b}$ has infinitely many solutions.} |
| 52 | + \choice[correct]{$A\vec{x}=\vec{b}$ has no solutions.} |
| 53 | + \end{selectAll} |
| 54 | + |
| 55 | + \item Which of the following is true about the columns of $A$? |
| 56 | + \begin{multipleChoice} |
| 57 | + \choice[correct]{Columns of $A$ are linearly independent.} |
| 58 | + \choice{Columns of $A$ are linearly dependent.} |
| 59 | + \choice{Not enough information is given to determine linear dependence/independence of the columns of $A$.} |
| 60 | + \end{multipleChoice} |
| 61 | + |
| 62 | + \item Let $T$ be a linear transformation induced by $A$. What is true about $T$? (Check all that apply.) |
| 63 | + |
| 64 | + \begin{selectAll} |
| 65 | + \choice{$T:\RR^7\rightarrow \RR^2$} |
| 66 | + \choice[correct]{$T:\RR^2\rightarrow \RR^7$} |
| 67 | + \choice[correct]{$\vec{0}$ is the ONLY vector that maps to $\vec{0}$.} |
| 68 | + \choice{Infinitely many vectors map to $\vec{0}$.} |
| 69 | + \choice[correct]{$\text{dim}(\text{im}(T))=2$} |
| 70 | + \choice{$\text{dim}(\text{im}(T))=7$} |
| 71 | + \end{selectAll} |
| 72 | + \end{enumerate} |
| 73 | +\end{exercise} |
| 74 | + |
| 75 | +\begin{exercise} |
| 76 | +You may use technology for this problem. Let $$S=\text{span}\left(\begin{bmatrix}1\\-3\\14\end{bmatrix},\begin{bmatrix}17\\0\\16\end{bmatrix},\begin{bmatrix}10\\4\\-8\end{bmatrix}\right)$$. |
| 77 | +\begin{enumerate} |
| 78 | + \item Describe $S$. |
| 79 | + \begin{multipleChoice} |
| 80 | + \choice{$S$ is ALL of $\RR^3$.} |
| 81 | + \choice[correct]{$S$ is a plane in $\RR^3$.} |
| 82 | + \choice{$S$ is a line in $\RR^3$.} |
| 83 | + \end{multipleChoice} |
| 84 | + |
| 85 | + \item Let $\mathcal{B}=\left\{\begin{bmatrix}1\\-3\\14\end{bmatrix},\begin{bmatrix}17\\0\\16\end{bmatrix},\begin{bmatrix}10\\4\\-8\end{bmatrix}\right\}$. Is $\mathcal{B}$ a basis for $S$? |
| 86 | + \begin{multipleChoice} |
| 87 | + \choice{Yes} |
| 88 | + \choice[correct]{No} |
| 89 | + \end{multipleChoice} |
| 90 | +\end{enumerate} |
| 91 | + |
| 92 | +\end{exercise} |
| 93 | + |
| 94 | +\begin{exercise} |
| 95 | + Let $A$ be a $3\times 3$ matrix. Suppose $\text{rref}(A)=\begin{bmatrix}1 & 0 &-2\\0 & 1 & 1\\0 & 0& 0\end{bmatrix}$. What do you know (or can deduce) from this information? (Check all that apply.) |
| 96 | + \begin{selectAll} |
| 97 | + \choice[correct]{$\det(A)=0$} |
| 98 | + \choice[correct]{I can find the row space of $A$.} |
| 99 | + \choice{I can find the column space of $A$.} |
| 100 | + \choice[correct]{Columns of $A$ are linearly dependent.} |
| 101 | + \choice[correct]{Rows of $A$ are linearly dependent.} |
| 102 | + \choice[correct]{$A$ is not invertible.} |
| 103 | + \choice[correct]{The null space of $A$ has infinitely many elements.} |
| 104 | + \choice[correct]{0 is an eigenvalue of $A$.} |
| 105 | + \end{selectAll} |
| 106 | +\end{exercise} |
| 107 | + |
| 108 | +\begin{exercise} |
| 109 | +Find the standard matrix, $A$, of the linear transformation $T:\RR^2\rightarrow \RR^2$ if $$T\left(\begin{bmatrix}1\\1\end{bmatrix}\right)=\begin{bmatrix}-1\\7\end{bmatrix},\quad T\left(\begin{bmatrix}0\\2\end{bmatrix}\right)=\begin{bmatrix}-4\\8\end{bmatrix}$$ |
| 110 | +$$A=\begin{bmatrix}\answer{1} & \answer{-2}\\\answer{3} & \answer{4}\end{bmatrix}$$ |
| 111 | + |
| 112 | +\end{exercise} |
| 113 | + |
| 114 | +\begin{exercise} |
| 115 | +Find the determinant of $A$ if |
| 116 | +$$A=\begin{bmatrix}1 & 3 & 4 & 1\\k & 0 & 0 & 2\\0 & 1 & -2 & 1\\1 & -1 & 0 & 1\end{bmatrix}$$ |
| 117 | +where $k$ is a constant. |
| 118 | + |
| 119 | +$$\mbox{det}(A)=\answer{16k-24}$$ |
| 120 | + |
| 121 | +For what value of $k$ is $A$ singular? |
| 122 | + |
| 123 | +$$k=\answer{1.5}$$ |
| 124 | + \end{exercise} |
| 125 | + |
| 126 | + \begin{exercise} |
| 127 | +Find the determinant of $A$ by first adding all other rows to the first row. |
| 128 | +$$A=\begin{bmatrix}x-1 & 2 & 3\\2 & -3 & x-2\\-2 & x & -2\end{bmatrix}$$ |
| 129 | + |
| 130 | +$$\mbox{det}(A)=\answer{0}$$ |
| 131 | + |
| 132 | +\subsection*{Source} |
| 133 | +[Nicholson] W. Keith Nicholson, {\it Linear Algebra with Applications}, Lyryx 2021, Open Edition, Exercises 3.1.14 (a). |
| 134 | + \end{exercise} |
| 135 | + |
| 136 | +\begin{exercise} |
| 137 | +Use technology to find the line of best fit. |
| 138 | + |
| 139 | +\begin{center} |
| 140 | +\desmos{xfoeppxjbn}{800}{400} |
| 141 | +\end{center} |
| 142 | + |
| 143 | +Enter your computed coefficients to three decimal places. |
| 144 | +$$y=\answer[tolerance=0.01]{-0.915}x+\answer[tolerance=0.01]{0.393}$$ |
| 145 | +Plot your your line of best fit in the Desmos interactive above. |
| 146 | + |
| 147 | + \end{exercise} |
| 148 | + |
| 149 | + \begin{exercise} |
| 150 | + |
| 151 | +True or False? If False, you should come up with a counterexample. |
| 152 | + |
| 153 | +Suppose $A$ and $B$ are $n\times n$ matrices ($n\geq 2$). |
| 154 | + |
| 155 | + \begin{enumerate} |
| 156 | + \item $\det{(AB)}=\det{A}\det{B}$ |
| 157 | + |
| 158 | + \begin{multipleChoice} |
| 159 | + \choice[correct]{True} |
| 160 | + \choice{False} |
| 161 | + \end{multipleChoice} |
| 162 | + |
| 163 | + \item If $\det{A}=\frac{1}{\det{B}}$, then $A=B^{-1}$. |
| 164 | + |
| 165 | + \begin{multipleChoice} |
| 166 | + \choice{True} |
| 167 | + \choice[correct]{False} |
| 168 | + \end{multipleChoice} |
| 169 | + |
| 170 | +\item $\det{(A+B)}=\det{A}+\det{B}$. |
| 171 | + |
| 172 | + \begin{multipleChoice} |
| 173 | + \choice{True} |
| 174 | + \choice[correct]{False} |
| 175 | + \end{multipleChoice} |
| 176 | + |
| 177 | + \item If $A=2B$, then $\det{A}=2\det{B}$. |
| 178 | + |
| 179 | + \begin{multipleChoice} |
| 180 | + \choice{True} |
| 181 | + \choice[correct]{False} |
| 182 | + \end{multipleChoice} |
| 183 | + |
| 184 | + \item If $A=-B$, then $\det{A}=-\det{B}$ when $n$ is odd, and $\det{A}=\det{B}$ when $n$ is even. |
| 185 | + |
| 186 | + \begin{multipleChoice} |
| 187 | + \choice[correct]{True} |
| 188 | + \choice{False} |
| 189 | + \end{multipleChoice} |
| 190 | + \end{enumerate} |
| 191 | +\end{exercise} |
| 192 | + |
| 193 | +\begin{exercise} |
| 194 | +Let $B$ be a parallelepiped determined by vectors $\vec{u}$, $\vec{v}$, and $\vec{w}$ in $\RR^3$. Suppose the volume of $B$ is 10 cubic units. Let $B'$ be a parallelepiped determined by $-\vec{u}$, $2\vec{v}$, and $\vec{w}+\vec{u}$. Find the volume of $B'$. |
| 195 | + |
| 196 | +$$\text{volume of }B' = \answer{20}\,\text{cubic units}$$ |
| 197 | + |
| 198 | + |
| 199 | + \end{exercise} |
| 200 | + |
| 201 | +\begin{exercise} |
| 202 | +Find eigenvalues of $A=\begin{bmatrix} 2 & 4\\5 & 3\end{bmatrix}$. |
| 203 | + |
| 204 | +$$\text{Eigenvalues (in increasing order): }\lambda_1=\answer{-2}, \quad\lambda_2=\answer{7}$$ |
| 205 | + |
| 206 | +Compute a basis for the eigenspace associated with each of these eigenvalues. |
| 207 | + |
| 208 | +A basis for $\mathcal{S}_{\lambda_1}$: $\left\{\begin{bmatrix}1\\\answer{-1}\end{bmatrix}\right\}$ |
| 209 | + |
| 210 | +A basis for $\mathcal{S}_{\lambda_2}$: $\left\{\begin{bmatrix}4\\\answer{5}\end{bmatrix}\right\}$ |
| 211 | + |
| 212 | + \end{exercise} |
| 213 | + |
| 214 | + \begin{exercise} |
| 215 | +Let $A=\begin{bmatrix} 2 & 3 & -3 \\ 1 & 0 & -1 \\ 1 & 1 & -2 \end{bmatrix}$ and let $B=\begin{bmatrix} 0 & 1 & 0 \\ 3 & 0 & 1 \\ 2 & 0 & 0 \end{bmatrix}$. |
| 216 | + |
| 217 | +Each of these matrices has the same characteristic polynomial, $(2-\lambda)(1+\lambda)^2$. Which of the following is true? (Justify your answer.) |
| 218 | + |
| 219 | + \begin{multipleChoice} |
| 220 | + \choice[correct]{$A$ is diagonalizable but $B$ is not diagonalizable.} |
| 221 | + \choice{$A$ is not diagonalizable but $B$ is diagonalizable.} |
| 222 | + \choice{Both $A$ and $B$ are diagonalizable.} |
| 223 | + \choice{Neither $A$ nor $B$ is diagonalizable.} |
| 224 | + \end{multipleChoice} |
| 225 | + |
| 226 | +[Nicholson] W. Keith Nicholson, {\it Linear Algebra with Applications}, Lyryx 2021, Open Edition, Problem 3.3.26. |
| 227 | +\end{exercise} |
| 228 | + |
| 229 | +\begin{exercise} |
| 230 | + |
| 231 | +For square matrices $A$ and $B$. True or False? If False, you should come up with a counterexample. If True, can you give a proof? |
| 232 | + |
| 233 | + \begin{enumerate} |
| 234 | + |
| 235 | + \item If $\lambda$ is an eigenvalue of $A$, then $\lambda - c$ is an eigenvalue of $A - cI$. |
| 236 | + \begin{multipleChoice} |
| 237 | + \choice[correct]{True} |
| 238 | + \choice{False} |
| 239 | + \end{multipleChoice} |
| 240 | + |
| 241 | + \item If $\lambda$ is an eigenvalue of $A$, then $2\lambda$ is an eigenvalue of $2A$. |
| 242 | + \begin{multipleChoice} |
| 243 | + \choice[correct]{True} |
| 244 | + \choice{False} |
| 245 | + \end{multipleChoice} |
| 246 | + |
| 247 | + \end{enumerate} |
| 248 | +\end{exercise} |
| 249 | + |
| 250 | +\begin{exercise} |
| 251 | +If $A = \begin{bmatrix} |
| 252 | +5 & 0 & 0 \\ |
| 253 | +0 & 3 & 7 \\ |
| 254 | +0 & 7 & 3 |
| 255 | +\end{bmatrix}$, find an orthogonal matrix $Q$ and a diagonal matrix $D$ such that $D=Q^{-1}AQ$. |
| 256 | + |
| 257 | +$$Q = \begin{bmatrix} |
| 258 | +1 & \answer{0} & \answer{0} \\ |
| 259 | +\answer{0} & 1/\sqrt{2} & 1/\sqrt{2} \\ |
| 260 | +\answer{0} & 1/\sqrt{2} & \answer{-1/\sqrt{2}} |
| 261 | +\end{bmatrix}$$ |
| 262 | +$$D=\begin{bmatrix}\answer{5} & 0 &0\\0&\answer{10} & 0\\0 & 0 &\answer{-4}\end{bmatrix}$$ |
| 263 | +Verify that the columns of $Q$ are orthonormal. Are the rows of $Q$ orthonormal? |
| 264 | + |
| 265 | + \end{exercise} |
| 266 | + |
| 267 | + \begin{exercise} |
| 268 | + Each set $V$ given below is a subset of $\mathbb{M}_{2,2}$ with the usual matrix operations. Is $V$ a subspace of $\mathbb{M}_{2,2}$? |
| 269 | +\begin{enumerate} |
| 270 | + \item $V$ is the set of $2 \times 2$ matrices with zero determinant. |
| 271 | +\begin{multipleChoice} |
| 272 | + \choice{$V$ is a vector space.} |
| 273 | + \choice[correct]{$V$ is not a vector space.} |
| 274 | + \end{multipleChoice} |
| 275 | + |
| 276 | + \item $V$ is the set of all $2 \times 2$ matrices whose entries sum to 0. |
| 277 | + |
| 278 | + \begin{multipleChoice} |
| 279 | + \choice[correct]{$V$ is a vector space.} |
| 280 | + \choice{$V$ is not a vector space.} |
| 281 | + \end{multipleChoice} |
| 282 | + |
| 283 | +\end{enumerate} |
| 284 | +[Nicholson] W. Keith Nicholson, {\it Linear Algebra with Applications}, Lyryx 2021, Open Edition, Exercises 6.1.2. |
| 285 | + \end{exercise} |
| 286 | + |
| 287 | +\begin{exercise} |
| 288 | +Describe the following subspace of $\mathbb{M}_{3,3}$. |
| 289 | +$$\text{span}\left\{\begin{bmatrix}1 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{bmatrix},\begin{bmatrix}0 & 0 & 0\\0 & 1 & 0\\0 & 0 & 0\end{bmatrix}, \begin{bmatrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 1\end{bmatrix}, \begin{bmatrix}0 & 1 & 0\\1 & 0 & 0\\0 & 0 & 0\end{bmatrix}, \begin{bmatrix}0 & 0 & 1\\0 & 0 & 0\\1 & 0 & 0\end{bmatrix}, \begin{bmatrix}0 & 0 & 0\\0 & 0 & 1\\0 & 1 & 0\end{bmatrix}\right\}$$ |
| 290 | + |
| 291 | +The subspace consists of: |
| 292 | + \begin{multipleChoice} |
| 293 | + \choice[correct]{Matrices $A$ of $\mathbb{M}_{3,3}$ such that $A^T=A$.} |
| 294 | + \choice{All invertible matrices of $\mathbb{M}_{3,3}$.} |
| 295 | + \choice{Upper and lower triangular matrices of $\mathbb{M}_{3,3}$.} |
| 296 | + \choice{All of $\mathbb{M}_{3,3}$.} |
| 297 | + \end{multipleChoice} |
| 298 | + |
| 299 | + \end{exercise} |
| 300 | + |
| 301 | + \begin{exercise} |
| 302 | +Find the matrix of the linear transformation $T:\mathbb{M}_{2,2}\rightarrow \mathbb{M}_{2,2}$, given by $T(A)=A^T$, if the basis of the domain ($\mathcal{B}$) and the basis of the codomain ($\mathcal{D}$) are given by |
| 303 | +$$\mathcal{B}=\mathcal{D}=\left\{\begin{bmatrix}1 & 0\\0 & 0\end{bmatrix},\begin{bmatrix}0 & 1\\0 & 0\end{bmatrix}, \begin{bmatrix}0 & 0\\1 & 0\end{bmatrix}, \begin{bmatrix}0 & 0\\0 & 1\end{bmatrix}\right\} $$ |
| 304 | + |
| 305 | +$$\begin{bmatrix}\answer{1} & \answer{0} & \answer{0} & \answer{0}\\\answer{0} & \answer{0} & \answer{1} & \answer{0}\\\answer{0} & \answer{1} & \answer{0} & \answer{0}\\\answer{0} & \answer{0} & \answer{0} & \answer{1}\end{bmatrix}$$ |
| 306 | + |
| 307 | +[Nicholson] W. Keith Nicholson, {\it Linear Algebra with Applications}, Lyryx 2021, Open Edition, Exercises 9.1.3 (b). |
| 308 | + \end{exercise} |
| 309 | + |
| 310 | + |
| 311 | +\begin{exercise} |
| 312 | +Find the coordinates of $\vec{v}=ax^2+bx+c$ of $\mathbb{P}^2$ with respect to the ordered basis $\mathcal{B}=\left\{x^2, x+1, x+2\right\}$. |
| 313 | +$$[\vec{v}]_{\mathcal{B}}=\begin{bmatrix}\answer{a}\\\answer{2b-c}\\\answer{c-b}\end{bmatrix}$$ |
| 314 | +[Nicholson] W. Keith Nicholson, {\it Linear Algebra with Applications}, Lyryx 2021, Open Edition, Exercises 9.1.1 (b). |
| 315 | + \end{exercise} |
| 316 | + |
| 317 | +\begin{exercise} |
| 318 | +Suppose $T:\mathbb{M}_{2,2}\rightarrow \RR$ is a linear transformation such that $$T\left(\begin{bmatrix}1 & 0\\0 & 0\end{bmatrix}\right)=3$$ |
| 319 | +$$T\left(\begin{bmatrix}0 & 1\\1 & 0\end{bmatrix}\right)=-1$$ |
| 320 | +$$T\left(\begin{bmatrix}1 & 0\\1 & 0\end{bmatrix}\right)=0$$ |
| 321 | +$$T\left(\begin{bmatrix}0 & 0\\0 & 1\end{bmatrix}\right)=0$$ |
| 322 | +Find $T\left(\begin{bmatrix}a & b\\c & d\end{bmatrix}\right)$ |
| 323 | +$$T\left(\begin{bmatrix}a & b\\c & d\end{bmatrix}\right)=\answer{3a+2b-3c}$$ |
| 324 | +[Nicholson] W. Keith Nicholson, {\it Linear Algebra with Applications}, Lyryx 2021, Open Edition, Exercises 7.1.4 (d). |
| 325 | + \end{exercise} |
| 326 | + |
| 327 | +\begin{exercise} |
| 328 | +Suppose $T:\mathbb{P}^2\rightarrow \mathbb{P}^3$ is a linear transformation such that $$T(x^2)=x^3,\quad T(x+1)=0,\quad T(x-1)=x$$ |
| 329 | +Find $T(x^2+x+1)$. |
| 330 | +$$T(x^2+x+1)=\answer{x^3}$$ |
| 331 | +[Nicholson] W. Keith Nicholson, {\it Linear Algebra with Applications}, Lyryx 2021, Open Edition, Exercises 7.1.4 (c). |
| 332 | + \end{exercise} |
| 333 | + |
| 334 | + |
| 335 | + |
| 336 | +\end{document} |
0 commit comments