Skip to content

Commit d55acbf

Browse files
committed
Final exam review
1 parent 83999a2 commit d55acbf

File tree

2 files changed

+351
-0
lines changed

2 files changed

+351
-0
lines changed

Review_final/main.tex

Lines changed: 336 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,336 @@
1+
\documentclass{ximera}
2+
\input{../preamble.tex}
3+
4+
\title{Review for the Final Exam} \license{CC BY-NC-SA 4.0}
5+
6+
\begin{document}
7+
8+
\begin{abstract}
9+
\end{abstract}
10+
\maketitle
11+
12+
\begin{onlineOnly}
13+
\section*{Review Problems for the Final Exam}
14+
\end{onlineOnly}
15+
16+
\begin{exercise}
17+
Suppose $A$ is a $3\times 5$ matrix, and $\text{rank}(A)=2$.
18+
19+
\begin{enumerate}
20+
\item Which of the following are possibilities for a non-zero vector $\vec{b}$? (Check all that apply.)
21+
22+
\begin{selectAll}
23+
\choice{$A\vec{x}=\vec{b}$ has a unique solution.}
24+
\choice[correct]{$A\vec{x}=\vec{b}$ has infinitely many solutions.}
25+
\choice[correct]{$A\vec{x}=\vec{b}$ has no solutions.}
26+
\end{selectAll}
27+
\item Find the following dimensions.
28+
$$\text{dim}(\text{null}(A))=\answer{3},\quad \text{dim}(\text{col}(A))=\answer{2},\quad \text{dim}(\text{row}(A))=\answer{2}$$
29+
30+
\item Let $T$ be a linear transformation induced by $A$. What is true about $T$? (Check all that apply.)
31+
32+
\begin{selectAll}
33+
\choice[correct]{$T:\RR^5\rightarrow \RR^3$}
34+
\choice{$T:\RR^3\rightarrow \RR^5$}
35+
\choice{$\vec{0}$ is the ONLY vector that maps to $\vec{0}$.}
36+
\choice[correct]{Infinitely many vectors map to $\vec{0}$.}
37+
\choice[correct]{$\text{dim}(\text{im}(T))=2$}
38+
\choice{$\text{dim}(\text{im}(T))=3$}
39+
\choice{$\text{dim}(\text{im}(T))=5$}
40+
\end{selectAll}
41+
\end{enumerate}
42+
\end{exercise}
43+
44+
\begin{exercise}
45+
Suppose $A$ is a $7\times 2$ matrix, and $\text{rank}(A)=2$.
46+
\begin{enumerate}
47+
\item Which of the following are possibilities for a non-zero vector $\vec{b}$? (Check all that apply.)
48+
49+
\begin{selectAll}
50+
\choice[correct]{$A\vec{x}=\vec{b}$ has a unique solution.}
51+
\choice{$A\vec{x}=\vec{b}$ has infinitely many solutions.}
52+
\choice[correct]{$A\vec{x}=\vec{b}$ has no solutions.}
53+
\end{selectAll}
54+
55+
\item Which of the following is true about the columns of $A$?
56+
\begin{multipleChoice}
57+
\choice[correct]{Columns of $A$ are linearly independent.}
58+
\choice{Columns of $A$ are linearly dependent.}
59+
\choice{Not enough information is given to determine linear dependence/independence of the columns of $A$.}
60+
\end{multipleChoice}
61+
62+
\item Let $T$ be a linear transformation induced by $A$. What is true about $T$? (Check all that apply.)
63+
64+
\begin{selectAll}
65+
\choice{$T:\RR^7\rightarrow \RR^2$}
66+
\choice[correct]{$T:\RR^2\rightarrow \RR^7$}
67+
\choice[correct]{$\vec{0}$ is the ONLY vector that maps to $\vec{0}$.}
68+
\choice{Infinitely many vectors map to $\vec{0}$.}
69+
\choice[correct]{$\text{dim}(\text{im}(T))=2$}
70+
\choice{$\text{dim}(\text{im}(T))=7$}
71+
\end{selectAll}
72+
\end{enumerate}
73+
\end{exercise}
74+
75+
\begin{exercise}
76+
You may use technology for this problem. Let $$S=\text{span}\left(\begin{bmatrix}1\\-3\\14\end{bmatrix},\begin{bmatrix}17\\0\\16\end{bmatrix},\begin{bmatrix}10\\4\\-8\end{bmatrix}\right)$$.
77+
\begin{enumerate}
78+
\item Describe $S$.
79+
\begin{multipleChoice}
80+
\choice{$S$ is ALL of $\RR^3$.}
81+
\choice[correct]{$S$ is a plane in $\RR^3$.}
82+
\choice{$S$ is a line in $\RR^3$.}
83+
\end{multipleChoice}
84+
85+
\item Let $\mathcal{B}=\left\{\begin{bmatrix}1\\-3\\14\end{bmatrix},\begin{bmatrix}17\\0\\16\end{bmatrix},\begin{bmatrix}10\\4\\-8\end{bmatrix}\right\}$. Is $\mathcal{B}$ a basis for $S$?
86+
\begin{multipleChoice}
87+
\choice{Yes}
88+
\choice[correct]{No}
89+
\end{multipleChoice}
90+
\end{enumerate}
91+
92+
\end{exercise}
93+
94+
\begin{exercise}
95+
Let $A$ be a $3\times 3$ matrix. Suppose $\text{rref}(A)=\begin{bmatrix}1 & 0 &-2\\0 & 1 & 1\\0 & 0& 0\end{bmatrix}$. What do you know (or can deduce) from this information? (Check all that apply.)
96+
\begin{selectAll}
97+
\choice[correct]{$\det(A)=0$}
98+
\choice[correct]{I can find the row space of $A$.}
99+
\choice{I can find the column space of $A$.}
100+
\choice[correct]{Columns of $A$ are linearly dependent.}
101+
\choice[correct]{Rows of $A$ are linearly dependent.}
102+
\choice[correct]{$A$ is not invertible.}
103+
\choice[correct]{The null space of $A$ has infinitely many elements.}
104+
\choice[correct]{0 is an eigenvalue of $A$.}
105+
\end{selectAll}
106+
\end{exercise}
107+
108+
\begin{exercise}
109+
Find the standard matrix, $A$, of the linear transformation $T:\RR^2\rightarrow \RR^2$ if $$T\left(\begin{bmatrix}1\\1\end{bmatrix}\right)=\begin{bmatrix}-1\\7\end{bmatrix},\quad T\left(\begin{bmatrix}0\\2\end{bmatrix}\right)=\begin{bmatrix}-4\\8\end{bmatrix}$$
110+
$$A=\begin{bmatrix}\answer{1} & \answer{-2}\\\answer{3} & \answer{4}\end{bmatrix}$$
111+
112+
\end{exercise}
113+
114+
\begin{exercise}
115+
Find the determinant of $A$ if
116+
$$A=\begin{bmatrix}1 & 3 & 4 & 1\\k & 0 & 0 & 2\\0 & 1 & -2 & 1\\1 & -1 & 0 & 1\end{bmatrix}$$
117+
where $k$ is a constant.
118+
119+
$$\mbox{det}(A)=\answer{16k-24}$$
120+
121+
For what value of $k$ is $A$ singular?
122+
123+
$$k=\answer{1.5}$$
124+
\end{exercise}
125+
126+
\begin{exercise}
127+
Find the determinant of $A$ by first adding all other rows to the first row.
128+
$$A=\begin{bmatrix}x-1 & 2 & 3\\2 & -3 & x-2\\-2 & x & -2\end{bmatrix}$$
129+
130+
$$\mbox{det}(A)=\answer{0}$$
131+
132+
\subsection*{Source}
133+
[Nicholson] W. Keith Nicholson, {\it Linear Algebra with Applications}, Lyryx 2021, Open Edition, Exercises 3.1.14 (a).
134+
\end{exercise}
135+
136+
\begin{exercise}
137+
Use technology to find the line of best fit.
138+
139+
\begin{center}
140+
\desmos{xfoeppxjbn}{800}{400}
141+
\end{center}
142+
143+
Enter your computed coefficients to three decimal places.
144+
$$y=\answer[tolerance=0.01]{-0.915}x+\answer[tolerance=0.01]{0.393}$$
145+
Plot your your line of best fit in the Desmos interactive above.
146+
147+
\end{exercise}
148+
149+
\begin{exercise}
150+
151+
True or False? If False, you should come up with a counterexample.
152+
153+
Suppose $A$ and $B$ are $n\times n$ matrices ($n\geq 2$).
154+
155+
\begin{enumerate}
156+
\item $\det{(AB)}=\det{A}\det{B}$
157+
158+
\begin{multipleChoice}
159+
\choice[correct]{True}
160+
\choice{False}
161+
\end{multipleChoice}
162+
163+
\item If $\det{A}=\frac{1}{\det{B}}$, then $A=B^{-1}$.
164+
165+
\begin{multipleChoice}
166+
\choice{True}
167+
\choice[correct]{False}
168+
\end{multipleChoice}
169+
170+
\item $\det{(A+B)}=\det{A}+\det{B}$.
171+
172+
\begin{multipleChoice}
173+
\choice{True}
174+
\choice[correct]{False}
175+
\end{multipleChoice}
176+
177+
\item If $A=2B$, then $\det{A}=2\det{B}$.
178+
179+
\begin{multipleChoice}
180+
\choice{True}
181+
\choice[correct]{False}
182+
\end{multipleChoice}
183+
184+
\item If $A=-B$, then $\det{A}=-\det{B}$ when $n$ is odd, and $\det{A}=\det{B}$ when $n$ is even.
185+
186+
\begin{multipleChoice}
187+
\choice[correct]{True}
188+
\choice{False}
189+
\end{multipleChoice}
190+
\end{enumerate}
191+
\end{exercise}
192+
193+
\begin{exercise}
194+
Let $B$ be a parallelepiped determined by vectors $\vec{u}$, $\vec{v}$, and $\vec{w}$ in $\RR^3$. Suppose the volume of $B$ is 10 cubic units. Let $B'$ be a parallelepiped determined by $-\vec{u}$, $2\vec{v}$, and $\vec{w}+\vec{u}$. Find the volume of $B'$.
195+
196+
$$\text{volume of }B' = \answer{20}\,\text{cubic units}$$
197+
198+
199+
\end{exercise}
200+
201+
\begin{exercise}
202+
Find eigenvalues of $A=\begin{bmatrix} 2 & 4\\5 & 3\end{bmatrix}$.
203+
204+
$$\text{Eigenvalues (in increasing order): }\lambda_1=\answer{-2}, \quad\lambda_2=\answer{7}$$
205+
206+
Compute a basis for the eigenspace associated with each of these eigenvalues.
207+
208+
A basis for $\mathcal{S}_{\lambda_1}$: $\left\{\begin{bmatrix}1\\\answer{-1}\end{bmatrix}\right\}$
209+
210+
A basis for $\mathcal{S}_{\lambda_2}$: $\left\{\begin{bmatrix}4\\\answer{5}\end{bmatrix}\right\}$
211+
212+
\end{exercise}
213+
214+
\begin{exercise}
215+
Let $A=\begin{bmatrix} 2 & 3 & -3 \\ 1 & 0 & -1 \\ 1 & 1 & -2 \end{bmatrix}$ and let $B=\begin{bmatrix} 0 & 1 & 0 \\ 3 & 0 & 1 \\ 2 & 0 & 0 \end{bmatrix}$.
216+
217+
Each of these matrices has the same characteristic polynomial, $(2-\lambda)(1+\lambda)^2$. Which of the following is true? (Justify your answer.)
218+
219+
\begin{multipleChoice}
220+
\choice[correct]{$A$ is diagonalizable but $B$ is not diagonalizable.}
221+
\choice{$A$ is not diagonalizable but $B$ is diagonalizable.}
222+
\choice{Both $A$ and $B$ are diagonalizable.}
223+
\choice{Neither $A$ nor $B$ is diagonalizable.}
224+
\end{multipleChoice}
225+
226+
[Nicholson] W. Keith Nicholson, {\it Linear Algebra with Applications}, Lyryx 2021, Open Edition, Problem 3.3.26.
227+
\end{exercise}
228+
229+
\begin{exercise}
230+
231+
For square matrices $A$ and $B$. True or False? If False, you should come up with a counterexample. If True, can you give a proof?
232+
233+
\begin{enumerate}
234+
235+
\item If $\lambda$ is an eigenvalue of $A$, then $\lambda - c$ is an eigenvalue of $A - cI$.
236+
\begin{multipleChoice}
237+
\choice[correct]{True}
238+
\choice{False}
239+
\end{multipleChoice}
240+
241+
\item If $\lambda$ is an eigenvalue of $A$, then $2\lambda$ is an eigenvalue of $2A$.
242+
\begin{multipleChoice}
243+
\choice[correct]{True}
244+
\choice{False}
245+
\end{multipleChoice}
246+
247+
\end{enumerate}
248+
\end{exercise}
249+
250+
\begin{exercise}
251+
If $A = \begin{bmatrix}
252+
5 & 0 & 0 \\
253+
0 & 3 & 7 \\
254+
0 & 7 & 3
255+
\end{bmatrix}$, find an orthogonal matrix $Q$ and a diagonal matrix $D$ such that $D=Q^{-1}AQ$.
256+
257+
$$Q = \begin{bmatrix}
258+
1 & \answer{0} & \answer{0} \\
259+
\answer{0} & 1/\sqrt{2} & 1/\sqrt{2} \\
260+
\answer{0} & 1/\sqrt{2} & \answer{-1/\sqrt{2}}
261+
\end{bmatrix}$$
262+
$$D=\begin{bmatrix}\answer{5} & 0 &0\\0&\answer{10} & 0\\0 & 0 &\answer{-4}\end{bmatrix}$$
263+
Verify that the columns of $Q$ are orthonormal. Are the rows of $Q$ orthonormal?
264+
265+
\end{exercise}
266+
267+
\begin{exercise}
268+
Each set $V$ given below is a subset of $\mathbb{M}_{2,2}$ with the usual matrix operations. Is $V$ a subspace of $\mathbb{M}_{2,2}$?
269+
\begin{enumerate}
270+
\item $V$ is the set of $2 \times 2$ matrices with zero determinant.
271+
\begin{multipleChoice}
272+
\choice{$V$ is a vector space.}
273+
\choice[correct]{$V$ is not a vector space.}
274+
\end{multipleChoice}
275+
276+
\item $V$ is the set of all $2 \times 2$ matrices whose entries sum to 0.
277+
278+
\begin{multipleChoice}
279+
\choice[correct]{$V$ is a vector space.}
280+
\choice{$V$ is not a vector space.}
281+
\end{multipleChoice}
282+
283+
\end{enumerate}
284+
[Nicholson] W. Keith Nicholson, {\it Linear Algebra with Applications}, Lyryx 2021, Open Edition, Exercises 6.1.2.
285+
\end{exercise}
286+
287+
\begin{exercise}
288+
Describe the following subspace of $\mathbb{M}_{3,3}$.
289+
$$\text{span}\left\{\begin{bmatrix}1 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{bmatrix},\begin{bmatrix}0 & 0 & 0\\0 & 1 & 0\\0 & 0 & 0\end{bmatrix}, \begin{bmatrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 1\end{bmatrix}, \begin{bmatrix}0 & 1 & 0\\1 & 0 & 0\\0 & 0 & 0\end{bmatrix}, \begin{bmatrix}0 & 0 & 1\\0 & 0 & 0\\1 & 0 & 0\end{bmatrix}, \begin{bmatrix}0 & 0 & 0\\0 & 0 & 1\\0 & 1 & 0\end{bmatrix}\right\}$$
290+
291+
The subspace consists of:
292+
\begin{multipleChoice}
293+
\choice[correct]{Matrices $A$ of $\mathbb{M}_{3,3}$ such that $A^T=A$.}
294+
\choice{All invertible matrices of $\mathbb{M}_{3,3}$.}
295+
\choice{Upper and lower triangular matrices of $\mathbb{M}_{3,3}$.}
296+
\choice{All of $\mathbb{M}_{3,3}$.}
297+
\end{multipleChoice}
298+
299+
\end{exercise}
300+
301+
\begin{exercise}
302+
Find the matrix of the linear transformation $T:\mathbb{M}_{2,2}\rightarrow \mathbb{M}_{2,2}$, given by $T(A)=A^T$, if the basis of the domain ($\mathcal{B}$) and the basis of the codomain ($\mathcal{D}$) are given by
303+
$$\mathcal{B}=\mathcal{D}=\left\{\begin{bmatrix}1 & 0\\0 & 0\end{bmatrix},\begin{bmatrix}0 & 1\\0 & 0\end{bmatrix}, \begin{bmatrix}0 & 0\\1 & 0\end{bmatrix}, \begin{bmatrix}0 & 0\\0 & 1\end{bmatrix}\right\} $$
304+
305+
$$\begin{bmatrix}\answer{1} & \answer{0} & \answer{0} & \answer{0}\\\answer{0} & \answer{0} & \answer{1} & \answer{0}\\\answer{0} & \answer{1} & \answer{0} & \answer{0}\\\answer{0} & \answer{0} & \answer{0} & \answer{1}\end{bmatrix}$$
306+
307+
[Nicholson] W. Keith Nicholson, {\it Linear Algebra with Applications}, Lyryx 2021, Open Edition, Exercises 9.1.3 (b).
308+
\end{exercise}
309+
310+
311+
\begin{exercise}
312+
Find the coordinates of $\vec{v}=ax^2+bx+c$ of $\mathbb{P}^2$ with respect to the ordered basis $\mathcal{B}=\left\{x^2, x+1, x+2\right\}$.
313+
$$[\vec{v}]_{\mathcal{B}}=\begin{bmatrix}\answer{a}\\\answer{2b-c}\\\answer{c-b}\end{bmatrix}$$
314+
[Nicholson] W. Keith Nicholson, {\it Linear Algebra with Applications}, Lyryx 2021, Open Edition, Exercises 9.1.1 (b).
315+
\end{exercise}
316+
317+
\begin{exercise}
318+
Suppose $T:\mathbb{M}_{2,2}\rightarrow \RR$ is a linear transformation such that $$T\left(\begin{bmatrix}1 & 0\\0 & 0\end{bmatrix}\right)=3$$
319+
$$T\left(\begin{bmatrix}0 & 1\\1 & 0\end{bmatrix}\right)=-1$$
320+
$$T\left(\begin{bmatrix}1 & 0\\1 & 0\end{bmatrix}\right)=0$$
321+
$$T\left(\begin{bmatrix}0 & 0\\0 & 1\end{bmatrix}\right)=0$$
322+
Find $T\left(\begin{bmatrix}a & b\\c & d\end{bmatrix}\right)$
323+
$$T\left(\begin{bmatrix}a & b\\c & d\end{bmatrix}\right)=\answer{3a+2b-3c}$$
324+
[Nicholson] W. Keith Nicholson, {\it Linear Algebra with Applications}, Lyryx 2021, Open Edition, Exercises 7.1.4 (d).
325+
\end{exercise}
326+
327+
\begin{exercise}
328+
Suppose $T:\mathbb{P}^2\rightarrow \mathbb{P}^3$ is a linear transformation such that $$T(x^2)=x^3,\quad T(x+1)=0,\quad T(x-1)=x$$
329+
Find $T(x^2+x+1)$.
330+
$$T(x^2+x+1)=\answer{x^3}$$
331+
[Nicholson] W. Keith Nicholson, {\it Linear Algebra with Applications}, Lyryx 2021, Open Edition, Exercises 7.1.4 (c).
332+
\end{exercise}
333+
334+
335+
336+
\end{document}

week16.tex

Lines changed: 15 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,15 @@
1+
\documentclass{xourse}
2+
3+
\input{preamble.tex}
4+
5+
\title{Week 16}
6+
7+
\begin{document}
8+
\begin{abstract}
9+
\end{abstract}
10+
\maketitle
11+
12+
13+
\activity{Review_final/main}
14+
15+
\end{document}

0 commit comments

Comments
 (0)