Skip to content

Commit aa4999e

Browse files
committed
doc and changelog
1 parent b044466 commit aa4999e

File tree

2 files changed

+36
-9
lines changed

2 files changed

+36
-9
lines changed

CHANGELOG_UNRELEASED.md

Lines changed: 9 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -4,6 +4,15 @@
44

55
### Added
66

7+
- in `unstable.v`
8+
+ lemmas `coprime_prodr`, `Gauss_dvd_prod`, `expn_prod`, `mono_ext`,
9+
`card_big_setU`
10+
11+
- file `pnt.v`
12+
+ definitions `prime_search`, `prime_seq`
13+
+ lemmas `leq_prime_seq`, `mem_prime_seq`
14+
+ theorem `DivergenceSumInversePrimeNumbers`
15+
716
### Changed
817

918
### Renamed

theories/showcase/pnt.v

Lines changed: 27 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -4,17 +4,31 @@ From mathcomp Require Import sequences reals interval
44
rat all_analysis archimedean ssrint.
55
Import Order.OrdinalOrder Num.Theory Order.POrderTheory
66
finset GRing.Theory Num.Def.
7+
8+
(**md**************************************************************************)
9+
(* # The Prime Number Theorem *)
10+
(* *)
11+
(* This file aims at formalizing Daboussi's proof of the prime number theorem.*)
12+
(* The main theorem proved so far is the divergence of the sum of the *)
13+
(* reciprocals of the prime numbers. *)
14+
(* *)
15+
(* ``` *)
16+
(* prime_seq == the sequence of prime numbers *)
17+
(* ``` *)
18+
(* *)
19+
(******************************************************************************)
20+
21+
Set Implicit Arguments.
22+
Unset Strict Implicit.
23+
Unset Printing Implicit Defensive.
24+
725
Local Open Scope ring_scope.
826
Local Open Scope ereal_scope.
927
Local Open Scope order_scope.
1028
Local Open Scope classical_set_scope.
1129
Local Open Scope set_scope.
1230
Local Open Scope nat_scope.
1331

14-
Set Implicit Arguments.
15-
Unset Strict Implicit.
16-
Unset Printing Implicit Defensive.
17-
1832
Fixpoint prime_search (i j : nat) : nat :=
1933
match j with
2034
| 0 => i`!.+1
@@ -106,19 +120,21 @@ have := (leq_ltn_trans kb2 kb1).
106120
by rewrite ltnn.
107121
Qed.
108122

109-
Definition P (k N : nat) :=
123+
Section DivergenceSumInversePrimeNumbers.
124+
125+
Let P (k N : nat) :=
110126
[set n : 'I_N.+1 |all (fun p => p < prime_seq k) (primes n)]%SET.
111-
Definition G (k N : nat) := ~: (P k N).
127+
Let G (k N : nat) := ~: (P k N).
112128

113-
Lemma cardPcardG : forall k N, #|G k N| + #|P k N| = N.+1.
129+
Fact cardPcardG : forall k N, #|G k N| + #|P k N| = N.+1.
114130
Proof.
115131
move=> k N. rewrite addnC.
116132
have: (P k N) :|: (G k N) = [set : 'I_N.+1]%SET by rewrite finset.setUCr.
117133
rewrite -cardsUI finset.setICr cards0.
118134
by rewrite -[X in _ + _ = X]card_ord addn0 -cardsT => ->.
119135
Qed.
120136

121-
Lemma cardG (R : realType) (k N : nat) :
137+
Fact cardG (R : realType) (k N : nat) :
122138
(\big[+%R/0%R]_(k <= k0 <oo) ((prime_seq k0)%:R^-1 : R)%:E < (2^-1)%:E)%E
123139
-> k <= N.+1 -> ~~ odd N -> N > 0 -> (#|G k N| < (N./2)).
124140
Proof.
@@ -281,7 +297,7 @@ rewrite val_insubd x3b3 /= => x2eqx3. move: x3b2.
281297
by rewrite ltnS -x2eqx3.
282298
Qed.
283299

284-
Lemma cardP (R : realType) (k : nat) :
300+
Fact cardP (R : realType) (k : nat) :
285301
#|P k (2 ^ (2 * k + 2))| <= (2 ^ (2 * k + 1)).+1.
286302
Proof.
287303
set N := 2 ^ (2 * k + 2).
@@ -459,3 +475,5 @@ apply: (@cardG R); first by move: Rklthalf; rewrite /un div1r.
459475
- by rewrite /N addn2 expnS mul2n odd_double.
460476
- by rewrite /N expn_gt0; apply/orP; left.
461477
Qed.
478+
479+
End DivergenceSumInversePrimeNumbers.

0 commit comments

Comments
 (0)