Skip to content

How to train my own dataset with 10 classes? #82

@zhaowei0315

Description

@zhaowei0315

I'm facing the following issue after changing DATASETS: DETECT_CLASSES with 10 classes.

/pytorch/aten/src/ATen/native/cuda/IndexKernel.cu:60: lambda ->auto::operator()(int)->auto: block: [1,0,0], thread: [111,0,0] Assertion index >= -sizes[i] && index < sizes[i] && "index out of bounds" failed.
/pytorch/aten/src/ATen/native/cuda/IndexKernel.cu:60: lambda ->auto::operator()(int)->auto: block: [0,0,0], thread: [57,0,0] Assertion index >= -sizes[i] && index < sizes[i] && "index out of bounds" failed.
/pytorch/aten/src/ATen/native/cuda/IndexKernel.cu:60: lambda ->auto::operator()(int)->auto: block: [0,0,0], thread: [58,0,0] Assertion index >= -sizes[i] && index < sizes[i] && "index out of bounds" failed.
/pytorch/aten/src/ATen/native/cuda/IndexKernel.cu:60: lambda ->auto::operator()(int)->auto: block: [0,0,0], thread: [59,0,0] Assertion index >= -sizes[i] && index < sizes[i] && "index out of bounds" failed.
/pytorch/aten/src/ATen/native/cuda/IndexKernel.cu:60: lambda ->auto::operator()(int)->auto: block: [0,0,0], thread: [60,0,0] Assertion index >= -sizes[i] && index < sizes[i] && "index out of bounds" failed.
/pytorch/aten/src/ATen/native/cuda/IndexKernel.cu:60: lambda ->auto::operator()(int)->auto: block: [0,0,0], thread: [61,0,0] Assertion index >= -sizes[i] && index < sizes[i] && "index out of bounds" failed.
/pytorch/aten/src/ATen/native/cuda/IndexKernel.cu:60: lambda ->auto::operator()(int)->auto: block: [0,0,0], thread: [62,0,0] Assertion index >= -sizes[i] && index < sizes[i] && "index out of bounds" failed.
Traceback (most recent call last):
File "tools/plain_train_net.py", line 104, in
args=(args,),
File "/fs/scratch/.xcserver_ai-initiative_backup2021/zfe5szh/SMOKE/smoke/engine/launch.py", line 56, in launch
main_func(*args)
File "tools/plain_train_net.py", line 92, in main
train(cfg, model, device, distributed)
File "tools/plain_train_net.py", line 55, in train
arguments
File "/fs/scratch/.xcserver_ai-initiative_backup2021/zfe5szh/SMOKE/smoke/engine/trainer.py", line 69, in do_train
loss_dict = model(images, targets)
File "/home/zfe5szh/.conda/envs/SMOKE/lib/python3.7/site-packages/torch/nn/modules/module.py", line 541, in call
result = self.forward(*input, **kwargs)
File "/fs/scratch/.xcserver_ai-initiative_backup2021/zfe5szh/SMOKE/smoke/modeling/detector/keypoint_detector.py", line 38, in forward
result, detector_losses = self.heads(features, targets)#############################################
File "/home/zfe5szh/.conda/envs/SMOKE/lib/python3.7/site-packages/torch/nn/modules/module.py", line 541, in call
result = self.forward(*input, **kwargs)
File "/fs/scratch/.xcserver_ai-initiative_backup2021/zfe5szh/SMOKE/smoke/modeling/heads/smoke_head/smoke_head.py", line 22, in forward
loss_heatmap, loss_regression = self.loss_evaluator(x, targets)
File "/fs/scratch/.xcserver_ai-initiative_backup2021/zfe5szh/SMOKE/smoke/modeling/heads/smoke_head/loss.py", line 117, in call
predict_boxes3d = self.prepare_predictions(targets_variables, pred_regression)
File "/fs/scratch/.xcserver_ai-initiative_backup2021/zfe5szh/SMOKE/smoke/modeling/heads/smoke_head/loss.py", line 79, in prepare_predictions
targets_variables["flip_mask"]
File "/fs/scratch/.xcserver_ai-initiative_backup2021/zfe5szh/SMOKE/smoke/modeling/smoke_coder.py", line 218, in decode_orientation
cos_pos_idx = (vector_ori[:, 1] > 0).nonzero()
RuntimeError: copy_if failed to synchronize: device-side assert triggered

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions