@@ -3919,7 +3919,7 @@ <h2 id="supporting-gpu-provisioning-and-orchestration-on-nebius"><a class="tocli
39193919developer velocity and efficiency.
39203920< code > dstack</ code > is an open-source orchestrator purpose-built for AI infrastructure—offering a lightweight, container-native
39213921alternative to Kubernetes and Slurm.</ p >
3922- < p > < img src ="https://github.com/dstackai/ static-assets/blob/main/ static-assets/images/dstack-nebius-v2.png?raw=true " width ="630 "/> </ p >
3922+ < p > < img src ="https://dstack.ai/ static-assets/static-assets/images/dstack-nebius-v2.png " width ="630 "/> </ p >
39233923< p > Today, we’re announcing native integration with < a href ="https://nebius.com/ " target ="_blank "> Nebius < span class ="twemoji external "> < svg xmlns ="http://www.w3.org/2000/svg " viewBox ="0 0 24 24 "> < path d ="m11.93 5 2.83 2.83L5 17.59 6.42 19l9.76-9.75L19 12.07V5z "/> </ svg > </ span > </ a > ,
39243924offering a streamlined developer experience for teams using GPUs for AI workloads.</ p >
39253925
@@ -3968,7 +3968,7 @@ <h2 id="built-in-ui-for-monitoring-essential-gpu-metrics"><a class="toclink" hre
39683968< p > AI workloads generate vast amounts of metrics, making it essential to have efficient monitoring tools. While our recent
39693969update introduced the ability to export available metrics to Prometheus for maximum flexibility, there are times when
39703970users need to quickly access essential metrics without the need to switch to an external tool.</ p >
3971- < p > < img src ="https://github.com/dstackai/ static-assets/blob/main/ static-assets/images/dstack-metrics-ui-v3-min.png?raw=true " width ="630 "/> </ p >
3971+ < p > < img src ="https://dstack.ai/ static-assets/static-assets/images/dstack-metrics-ui-v3-min.png " width ="630 "/> </ p >
39723972< p > Previously, we introduced a < a href ="../../dstack-metrics/ "> CLI command</ a > that allows users to view essential GPU metrics for both NVIDIA
39733973and AMD hardware. Now, with this latest update, we’re excited to announce the addition of a built-in dashboard within
39743974the < code > dstack</ code > control plane.</ p >
@@ -4022,7 +4022,7 @@ <h2 id="supporting-mpi-and-ncclrccl-tests"><a class="toclink" href="../../mpi/">
40224022< code > torchrun</ code > , < code > accelerate</ code > , or others. < code > dstack</ code > handles node provisioning, job execution, and automatically propagates
40234023system environment variables—such as < code > DSTACK_NODE_RANK</ code > , < code > DSTACK_MASTER_NODE_IP</ code > ,
40244024< code > DSTACK_GPUS_PER_NODE</ code > and < a href ="../../../docs/concepts/tasks/#system-environment-variables "> others</ a > —to containers.</ p >
4025- < p > < img src ="https://github.com/dstackai/ static-assets/blob/main/ static-assets/images/dstack-mpi-v2.png?raw=true " width ="630 "/> </ p >
4025+ < p > < img src ="https://dstack.ai/ static-assets/static-assets/images/dstack-mpi-v2.png " width ="630 "/> </ p >
40264026< p > One use case < code > dstack</ code > hasn’t supported until now is MPI, as it requires a scheduled environment or
40274027direct SSH connections between containers. Since < code > mpirun</ code > is essential for running NCCL/RCCL tests—crucial for large-scale
40284028cluster usage—we’ve added support for it.</ p >
@@ -4075,7 +4075,7 @@ <h3 id="why-prometheus" style="display:none"><a class="toclink" href="../../prom
40754075< p > While < code > dstack</ code > provides key metrics through its UI and < a href ="../../dstack-metrics/ "> < code > dstack metrics</ code > </ a > CLI, teams often need more granular data and prefer
40764076using their own monitoring tools. To support this, we’ve introduced a new endpoint that allows real-time exporting all collected
40774077metrics—covering fleets and runs—directly to Prometheus.</ p >
4078- < p > < img src ="https://github.com/dstackai/ static-assets/blob/main/ static-assets/images/dstack-prometheus-v3.png?raw=true " width ="630 "/> </ p >
4078+ < p > < img src ="https://dstack.ai/ static-assets/static-assets/images/dstack-prometheus-v3.png " width ="630 "/> </ p >
40794079
40804080
40814081 < nav class ="md-post__action ">
@@ -4122,7 +4122,7 @@ <h2 id="accessing-dev-environments-with-cursor"><a class="toclink" href="../../c
41224122< p > Previously, support was limited to VS Code. However, as developers rely on a variety of desktop IDEs,
41234123we’ve expanded compatibility. With this update, dev environments now offer effortless access for users of
41244124< a href ="https://www.cursor.com/ " target ="_blank "> Cursor < span class ="twemoji external "> < svg xmlns ="http://www.w3.org/2000/svg " viewBox ="0 0 24 24 "> < path d ="m11.93 5 2.83 2.83L5 17.59 6.42 19l9.76-9.75L19 12.07V5z "/> </ svg > </ span > </ a > .</ p >
4125- < p > < img src ="https://github.com/dstackai/ static-assets/blob/main/ static-assets/images/dstack-cursor-v2.png?raw=true " width ="630 "/> </ p >
4125+ < p > < img src ="https://dstack.ai/ static-assets/static-assets/images/dstack-cursor-v2.png " width ="630 "/> </ p >
41264126
41274127
41284128 < nav class ="md-post__action ">
@@ -4172,7 +4172,7 @@ <h2 id="deepseek-r1-inference-performance-mi300x-vs-h200"><a class="toclink" hre
41724172< p > In this benchmark, we evaluate the performance of three inference backends—SGLang, vLLM, and TensorRT-LLM—on two hardware
41734173configurations: 8x NVIDIA H200 and 8x AMD MI300X. Our goal is to compare throughput, latency, and overall efficiency to
41744174determine the optimal backend and hardware pairing for DeepSeek-R1's demanding requirements.</ p >
4175- < p > < img src ="https://github.com/dstackai/ static-assets/blob/main/ static-assets/images/h200-mi300x-deepskeek-benchmark-v2.png?raw=true " width ="630 "/> </ p >
4175+ < p > < img src ="https://dstack.ai/ static-assets/static-assets/images/h200-mi300x-deepskeek-benchmark-v2.png " width ="630 "/> </ p >
41764176< p > This benchmark was made possible through the generous support of our partners at
41774177< a href ="https://www.vultr.com/ " target ="_blank "> Vultr < span class ="twemoji external "> < svg xmlns ="http://www.w3.org/2000/svg " viewBox ="0 0 24 24 "> < path d ="m11.93 5 2.83 2.83L5 17.59 6.42 19l9.76-9.75L19 12.07V5z "/> </ svg > </ span > </ a > and
41784178< a href ="https://lambdalabs.com/ " target ="_blank "> Lambda < span class ="twemoji external "> < svg xmlns ="http://www.w3.org/2000/svg " viewBox ="0 0 24 24 "> < path d ="m11.93 5 2.83 2.83L5 17.59 6.42 19l9.76-9.75L19 12.07V5z "/> </ svg > </ span > </ a > ,
@@ -4224,7 +4224,7 @@ <h2 id="using-ssh-fleets-with-tensorwaves-private-amd-cloud"><a class="toclink"
42244224< p > In this tutorial, we’ll walk you through how < code > dstack</ code > can be used with
42254225< a href ="https://tensorwave.com/ " target ="_blank "> TensorWave < span class ="twemoji external "> < svg xmlns ="http://www.w3.org/2000/svg " viewBox ="0 0 24 24 "> < path d ="m11.93 5 2.83 2.83L5 17.59 6.42 19l9.76-9.75L19 12.07V5z "/> </ svg > </ span > </ a > using
42264226< a href ="../../../docs/concepts/fleets/#ssh "> SSH fleets</ a > .</ p >
4227- < p > < img src ="https://github.com/dstackai/ static-assets/blob/main/ static-assets/images/dstack-tensorwave-v2.png?raw=true " width ="630 "/> </ p >
4227+ < p > < img src ="https://dstack.ai/ static-assets/static-assets/images/dstack-tensorwave-v2.png " width ="630 "/> </ p >
42284228
42294229
42304230 < nav class ="md-post__action ">
@@ -4271,7 +4271,7 @@ <h2 id="supporting-intel-gaudi-ai-accelerators-with-ssh-fleets"><a class="toclin
42714271just leading cloud providers and on-prem environments but also a wide range of accelerators.</ p >
42724272< p > With our latest release, we’re adding support
42734273for Intel Gaudi AI Accelerator and launching a new partnership with Intel.</ p >
4274- < p > < img src ="https://github.com/dstackai/ static-assets/blob/main/ static-assets/images/dstack-intel-gaudi-and-intel-tiber-cloud-v2.png?raw=true " width ="630 "/> </ p >
4274+ < p > < img src ="https://dstack.ai/ static-assets/static-assets/images/dstack-intel-gaudi-and-intel-tiber-cloud-v2.png " width ="630 "/> </ p >
42754275
42764276
42774277 < nav class ="md-post__action ">
@@ -4317,7 +4317,7 @@ <h2 id="efficient-distributed-training-with-aws-efa"><a class="toclink" href="..
43174317ultra-low latency and high-throughput communication between nodes. This makes it an ideal solution for scaling
43184318distributed training workloads across multiple GPUs and instances.</ p >
43194319< p > With the latest release of < code > dstack</ code > , you can now leverage AWS EFA to supercharge your distributed training tasks.</ p >
4320- < p > < img src ="https://github.com/dstackai/ static-assets/blob/main/ static-assets/images/distributed-training-with-aws-efa-v2.png?raw=true " width ="630 "/> </ p >
4320+ < p > < img src ="https://dstack.ai/ static-assets/static-assets/images/distributed-training-with-aws-efa-v2.png " width ="630 "/> </ p >
43214321
43224322
43234323 < nav class ="md-post__action ">
@@ -4365,7 +4365,7 @@ <h2 id="auto-shutdown-for-inactive-dev-environmentsno-idle-gpus"><a class="tocli
43654365a container that has GPU access.</ p >
43664366< p > One issue with dev environments is forgetting to stop them or closing your laptop, leaving the GPU idle and costly. With
43674367our latest update, < code > dstack</ code > now detects inactive environments and automatically shuts them down, saving you money.</ p >
4368- < p > < img src ="https://github.com/dstackai/ static-assets/blob/main/ static-assets/images/inactive-dev-environments-auto-shutdown.png?raw=true " width ="630 "/> </ p >
4368+ < p > < img src ="https://dstack.ai/ static-assets/static-assets/images/inactive-dev-environments-auto-shutdown.png " width ="630 "/> </ p >
43694369
43704370
43714371 < nav class ="md-post__action ">
0 commit comments