Skip to content

Commit be7a93d

Browse files
Deploying to gh-pages from @ dstackai/dstack@61eb095 🚀
1 parent a6738c8 commit be7a93d

File tree

41 files changed

+258
-258
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

41 files changed

+258
-258
lines changed

blog/amd-mi300x-inference-benchmark/index.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -92,7 +92,7 @@
9292
<meta property="og:title" content="Benchmarking Llama 3.1 405B on 8x AMD MI300X GPUs - dstack" />
9393
<meta property="og:description" content="Exploring how the inference performance of Llama 3.1 405B varies on 8x AMD MI300X GPUs across vLLM and TGI backends in different use cases." />
9494
<meta property="og:image" content="
95-
https://github.com/dstackai/static-assets/blob/main/static-assets/images/dstack-hotaisle-amd-mi300x-prompt-v5.png?raw=true" />
95+
https://dstack.ai/static-assets/static-assets/images/dstack-hotaisle-amd-mi300x-prompt-v5.png" />
9696
<meta property="og:image:type" content="image/png" />
9797
<meta property="og:image:width" content="1200" />
9898
<meta property="og:image:height" content="630" />
@@ -101,7 +101,7 @@
101101
<meta property="twitter.title" content="Benchmarking Llama 3.1 405B on 8x AMD MI300X GPUs - dstack" />
102102
<meta property="twitter:description" content="Exploring how the inference performance of Llama 3.1 405B varies on 8x AMD MI300X GPUs across vLLM and TGI backends in different use cases." />
103103
<meta property="twitter:image" content="
104-
https://github.com/dstackai/static-assets/blob/main/static-assets/images/dstack-hotaisle-amd-mi300x-prompt-v5.png?raw=true" />
104+
https://dstack.ai/static-assets/static-assets/images/dstack-hotaisle-amd-mi300x-prompt-v5.png" />
105105
</head>
106106

107107

@@ -3903,7 +3903,7 @@ <h1 id="benchmarking-llama-31-405b-on-8x-amd-mi300x-gpus">Benchmarking Llama 3.1
39033903
so we saw this as a great chance to test our integration by benchmarking AMD GPUs. Our friends at
39043904
<a href="https://hotaisle.xyz/" target="_blank">Hot Aisle <span class="twemoji external"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m11.93 5 2.83 2.83L5 17.59 6.42 19l9.76-9.75L19 12.07V5z"/></svg></span></a>, who build top-tier
39053905
bare metal compute for AMD GPUs, kindly provided the hardware for the benchmark.</p>
3906-
<p><img src="https://github.com/dstackai/static-assets/blob/main/static-assets/images/dstack-hotaisle-amd-mi300x-prompt-v5.png?raw=true" width="750" /></p>
3906+
<p><img src="https://dstack.ai/static-assets/static-assets/images/dstack-hotaisle-amd-mi300x-prompt-v5.png" width="750" /></p>
39073907
<!-- more -->
39083908

39093909
<p>With access to a bare metal machine with 8x AMD MI300X GPUs from Hot Aisle, we decided to skip smaller models and went

blog/amd-on-runpod/index.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3850,7 +3850,7 @@ <h2 id="configuration">Configuration<a class="headerlink" href="#configuration"
38503850
<summary>Control plane</summary>
38513851
<p>If you specify <code>model</code> when running a service, <code>dstack</code> will automatically register the model on
38523852
an OpenAI-compatible endpoint and allow you to use it for chat via the control plane UI.</p>
3853-
<p><img src="https://github.com/dstackai/static-assets/blob/main/static-assets/images/dstack-control-plane-model-llama31.png?raw=true" width="750px" /></p>
3853+
<p><img src="https://dstack.ai/static-assets/static-assets/images/dstack-control-plane-model-llama31.png" width="750px" /></p>
38543854
</details>
38553855
<h2 id="whats-next">What's next?<a class="headerlink" href="#whats-next" title="Permanent link">&para;</a></h2>
38563856
<ol>

blog/amd-on-tensorwave/index.html

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -92,7 +92,7 @@
9292
<meta property="og:title" content="Using SSH fleets with TensorWave's private AMD cloud - dstack" />
9393
<meta property="og:description" content="This tutorial walks you through how dstack can be used with TensorWave's private AMD cloud using SSH fleets." />
9494
<meta property="og:image" content="
95-
https://github.com/dstackai/static-assets/blob/main/static-assets/images/dstack-tensorwave-v2.png?raw=true" />
95+
https://dstack.ai/static-assets/static-assets/images/dstack-tensorwave-v2.png" />
9696
<meta property="og:image:type" content="image/png" />
9797
<meta property="og:image:width" content="1200" />
9898
<meta property="og:image:height" content="630" />
@@ -101,7 +101,7 @@
101101
<meta property="twitter.title" content="Using SSH fleets with TensorWave's private AMD cloud - dstack" />
102102
<meta property="twitter:description" content="This tutorial walks you through how dstack can be used with TensorWave's private AMD cloud using SSH fleets." />
103103
<meta property="twitter:image" content="
104-
https://github.com/dstackai/static-assets/blob/main/static-assets/images/dstack-tensorwave-v2.png?raw=true" />
104+
https://dstack.ai/static-assets/static-assets/images/dstack-tensorwave-v2.png" />
105105
</head>
106106

107107

@@ -3788,14 +3788,14 @@ <h1 id="using-ssh-fleets-with-tensorwaves-private-amd-cloud">Using SSH fleets wi
37883788
<p>In this tutorial, we’ll walk you through how <code>dstack</code> can be used with
37893789
<a href="https://tensorwave.com/" target="_blank">TensorWave <span class="twemoji external"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m11.93 5 2.83 2.83L5 17.59 6.42 19l9.76-9.75L19 12.07V5z"/></svg></span></a> using
37903790
<a href="../../docs/concepts/fleets/#ssh">SSH fleets</a>.</p>
3791-
<p><img src="https://github.com/dstackai/static-assets/blob/main/static-assets/images/dstack-tensorwave-v2.png?raw=true" width="630"/></p>
3791+
<p><img src="https://dstack.ai/static-assets/static-assets/images/dstack-tensorwave-v2.png" width="630"/></p>
37923792
<!-- more -->
37933793

37943794
<p>TensorWave is a cloud provider specializing in large-scale AMD GPU clusters for both
37953795
training and inference.</p>
37963796
<p>Before following this tutorial, ensure you have access to a cluster. You’ll see the cluster and its nodes in your
37973797
TensorWave dashboard.</p>
3798-
<p><img src="https://github.com/dstackai/static-assets/blob/main/static-assets/images/dstack-tensorwave-ui.png?raw=true" width="750"/></p>
3798+
<p><img src="https://dstack.ai/static-assets/static-assets/images/dstack-tensorwave-ui.png" width="750"/></p>
37993799
<h2 id="creating-a-fleet">Creating a fleet<a class="headerlink" href="#creating-a-fleet" title="Permanent link">&para;</a></h2>
38003800
<details class="info">
38013801
<summary>Prerequisites</summary>

blog/archive/2024/index.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -3969,7 +3969,7 @@ <h2 id="exploring-inference-memory-saturation-effect-h100-vs-mi300x"><a class="t
39693969
Additionally, we compare deployment strategies: running two Llama 3.1 405B FP8 replicas on 4xMI300x versus a single
39703970
replica on 4xMI300x and 8xMI300x</p>
39713971
<p>Finally, we extrapolate performance projections for upcoming GPUs like NVIDIA H200, B200, and AMD MI325x, MI350x.</p>
3972-
<p><img src="https://github.com/dstackai/static-assets/blob/main/static-assets/images/h100-mi300x-inference-benchmark-v2.png?raw=true" width="630"/></p>
3972+
<p><img src="https://dstack.ai/static-assets/static-assets/images/h100-mi300x-inference-benchmark-v2.png" width="630"/></p>
39733973
<p>This benchmark is made possible through the generous support of our friends at
39743974
<a href="https://hotaisle.xyz/" target="_blank">Hot Aisle <span class="twemoji external"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m11.93 5 2.83 2.83L5 17.59 6.42 19l9.76-9.75L19 12.07V5z"/></svg></span></a> and
39753975
<a href="https://lambdalabs.com/" target="_blank">Lambda <span class="twemoji external"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m11.93 5 2.83 2.83L5 17.59 6.42 19l9.76-9.75L19 12.07V5z"/></svg></span></a>,
@@ -4147,7 +4147,7 @@ <h3 id="how-it-works" style="display:none"><a class="toclink" href="../../dstack
41474147
<p>While it's possible to use third-party monitoring tools with <code>dstack</code>, it is often more convenient to debug your run and
41484148
track metrics out of the box. That's why, with the latest release, <code>dstack</code> introduced <a href="../../../docs/reference/cli/dstack/metrics/"><code>dstack stats</code></a>, a new CLI (and API)
41494149
for monitoring container metrics, including GPU usage for <code>NVIDIA</code>, <code>AMD</code>, and other accelerators.</p>
4150-
<p><img src="https://github.com/dstackai/static-assets/blob/main/static-assets/images/dstack-stats-v2.png?raw=true" width="725"/></p>
4150+
<p><img src="https://dstack.ai/static-assets/static-assets/images/dstack-stats-v2.png" width="725"/></p>
41514151

41524152

41534153
<nav class="md-post__action">
@@ -4194,7 +4194,7 @@ <h2 id="benchmarking-llama-31-405b-on-8x-amd-mi300x-gpus"><a class="toclink" hre
41944194
so we saw this as a great chance to test our integration by benchmarking AMD GPUs. Our friends at
41954195
<a href="https://hotaisle.xyz/" target="_blank">Hot Aisle <span class="twemoji external"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m11.93 5 2.83 2.83L5 17.59 6.42 19l9.76-9.75L19 12.07V5z"/></svg></span></a>, who build top-tier
41964196
bare metal compute for AMD GPUs, kindly provided the hardware for the benchmark.</p>
4197-
<p><img src="https://github.com/dstackai/static-assets/blob/main/static-assets/images/dstack-hotaisle-amd-mi300x-prompt-v5.png?raw=true" width="750" /></p>
4197+
<p><img src="https://dstack.ai/static-assets/static-assets/images/dstack-hotaisle-amd-mi300x-prompt-v5.png" width="750" /></p>
41984198

41994199

42004200
<nav class="md-post__action">

blog/archive/2025/index.html

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -3919,7 +3919,7 @@ <h2 id="supporting-gpu-provisioning-and-orchestration-on-nebius"><a class="tocli
39193919
developer velocity and efficiency.
39203920
<code>dstack</code> is an open-source orchestrator purpose-built for AI infrastructure—offering a lightweight, container-native
39213921
alternative to Kubernetes and Slurm.</p>
3922-
<p><img src="https://github.com/dstackai/static-assets/blob/main/static-assets/images/dstack-nebius-v2.png?raw=true" width="630"/></p>
3922+
<p><img src="https://dstack.ai/static-assets/static-assets/images/dstack-nebius-v2.png" width="630"/></p>
39233923
<p>Today, we’re announcing native integration with <a href="https://nebius.com/" target="_blank">Nebius <span class="twemoji external"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m11.93 5 2.83 2.83L5 17.59 6.42 19l9.76-9.75L19 12.07V5z"/></svg></span></a>,
39243924
offering a streamlined developer experience for teams using GPUs for AI workloads.</p>
39253925

@@ -3968,7 +3968,7 @@ <h2 id="built-in-ui-for-monitoring-essential-gpu-metrics"><a class="toclink" hre
39683968
<p>AI workloads generate vast amounts of metrics, making it essential to have efficient monitoring tools. While our recent
39693969
update introduced the ability to export available metrics to Prometheus for maximum flexibility, there are times when
39703970
users need to quickly access essential metrics without the need to switch to an external tool.</p>
3971-
<p><img src="https://github.com/dstackai/static-assets/blob/main/static-assets/images/dstack-metrics-ui-v3-min.png?raw=true" width="630"/></p>
3971+
<p><img src="https://dstack.ai/static-assets/static-assets/images/dstack-metrics-ui-v3-min.png" width="630"/></p>
39723972
<p>Previously, we introduced a <a href="../../dstack-metrics/">CLI command</a> that allows users to view essential GPU metrics for both NVIDIA
39733973
and AMD hardware. Now, with this latest update, we’re excited to announce the addition of a built-in dashboard within
39743974
the <code>dstack</code> control plane.</p>
@@ -4022,7 +4022,7 @@ <h2 id="supporting-mpi-and-ncclrccl-tests"><a class="toclink" href="../../mpi/">
40224022
<code>torchrun</code>, <code>accelerate</code>, or others. <code>dstack</code> handles node provisioning, job execution, and automatically propagates
40234023
system environment variables—such as <code>DSTACK_NODE_RANK</code>, <code>DSTACK_MASTER_NODE_IP</code>,
40244024
<code>DSTACK_GPUS_PER_NODE</code> and <a href="../../../docs/concepts/tasks/#system-environment-variables">others</a>—to containers.</p>
4025-
<p><img src="https://github.com/dstackai/static-assets/blob/main/static-assets/images/dstack-mpi-v2.png?raw=true" width="630"/></p>
4025+
<p><img src="https://dstack.ai/static-assets/static-assets/images/dstack-mpi-v2.png" width="630"/></p>
40264026
<p>One use case <code>dstack</code> hasn’t supported until now is MPI, as it requires a scheduled environment or
40274027
direct SSH connections between containers. Since <code>mpirun</code> is essential for running NCCL/RCCL tests—crucial for large-scale
40284028
cluster usage—we’ve added support for it.</p>
@@ -4075,7 +4075,7 @@ <h3 id="why-prometheus" style="display:none"><a class="toclink" href="../../prom
40754075
<p>While <code>dstack</code> provides key metrics through its UI and <a href="../../dstack-metrics/"><code>dstack metrics</code></a> CLI, teams often need more granular data and prefer
40764076
using their own monitoring tools. To support this, we’ve introduced a new endpoint that allows real-time exporting all collected
40774077
metrics—covering fleets and runs—directly to Prometheus.</p>
4078-
<p><img src="https://github.com/dstackai/static-assets/blob/main/static-assets/images/dstack-prometheus-v3.png?raw=true" width="630"/></p>
4078+
<p><img src="https://dstack.ai/static-assets/static-assets/images/dstack-prometheus-v3.png" width="630"/></p>
40794079

40804080

40814081
<nav class="md-post__action">
@@ -4122,7 +4122,7 @@ <h2 id="accessing-dev-environments-with-cursor"><a class="toclink" href="../../c
41224122
<p>Previously, support was limited to VS Code. However, as developers rely on a variety of desktop IDEs,
41234123
we’ve expanded compatibility. With this update, dev environments now offer effortless access for users of
41244124
<a href="https://www.cursor.com/" target="_blank">Cursor <span class="twemoji external"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m11.93 5 2.83 2.83L5 17.59 6.42 19l9.76-9.75L19 12.07V5z"/></svg></span></a>.</p>
4125-
<p><img src="https://github.com/dstackai/static-assets/blob/main/static-assets/images/dstack-cursor-v2.png?raw=true" width="630"/></p>
4125+
<p><img src="https://dstack.ai/static-assets/static-assets/images/dstack-cursor-v2.png" width="630"/></p>
41264126

41274127

41284128
<nav class="md-post__action">
@@ -4172,7 +4172,7 @@ <h2 id="deepseek-r1-inference-performance-mi300x-vs-h200"><a class="toclink" hre
41724172
<p>In this benchmark, we evaluate the performance of three inference backends—SGLang, vLLM, and TensorRT-LLM—on two hardware
41734173
configurations: 8x NVIDIA H200 and 8x AMD MI300X. Our goal is to compare throughput, latency, and overall efficiency to
41744174
determine the optimal backend and hardware pairing for DeepSeek-R1's demanding requirements.</p>
4175-
<p><img src="https://github.com/dstackai/static-assets/blob/main/static-assets/images/h200-mi300x-deepskeek-benchmark-v2.png?raw=true" width="630"/></p>
4175+
<p><img src="https://dstack.ai/static-assets/static-assets/images/h200-mi300x-deepskeek-benchmark-v2.png" width="630"/></p>
41764176
<p>This benchmark was made possible through the generous support of our partners at
41774177
<a href="https://www.vultr.com/" target="_blank">Vultr <span class="twemoji external"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m11.93 5 2.83 2.83L5 17.59 6.42 19l9.76-9.75L19 12.07V5z"/></svg></span></a> and
41784178
<a href="https://lambdalabs.com/" target="_blank">Lambda <span class="twemoji external"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m11.93 5 2.83 2.83L5 17.59 6.42 19l9.76-9.75L19 12.07V5z"/></svg></span></a>,
@@ -4224,7 +4224,7 @@ <h2 id="using-ssh-fleets-with-tensorwaves-private-amd-cloud"><a class="toclink"
42244224
<p>In this tutorial, we’ll walk you through how <code>dstack</code> can be used with
42254225
<a href="https://tensorwave.com/" target="_blank">TensorWave <span class="twemoji external"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m11.93 5 2.83 2.83L5 17.59 6.42 19l9.76-9.75L19 12.07V5z"/></svg></span></a> using
42264226
<a href="../../../docs/concepts/fleets/#ssh">SSH fleets</a>.</p>
4227-
<p><img src="https://github.com/dstackai/static-assets/blob/main/static-assets/images/dstack-tensorwave-v2.png?raw=true" width="630"/></p>
4227+
<p><img src="https://dstack.ai/static-assets/static-assets/images/dstack-tensorwave-v2.png" width="630"/></p>
42284228

42294229

42304230
<nav class="md-post__action">
@@ -4271,7 +4271,7 @@ <h2 id="supporting-intel-gaudi-ai-accelerators-with-ssh-fleets"><a class="toclin
42714271
just leading cloud providers and on-prem environments but also a wide range of accelerators.</p>
42724272
<p>With our latest release, we’re adding support
42734273
for Intel Gaudi AI Accelerator and launching a new partnership with Intel.</p>
4274-
<p><img src="https://github.com/dstackai/static-assets/blob/main/static-assets/images/dstack-intel-gaudi-and-intel-tiber-cloud-v2.png?raw=true" width="630"/></p>
4274+
<p><img src="https://dstack.ai/static-assets/static-assets/images/dstack-intel-gaudi-and-intel-tiber-cloud-v2.png" width="630"/></p>
42754275

42764276

42774277
<nav class="md-post__action">
@@ -4317,7 +4317,7 @@ <h2 id="efficient-distributed-training-with-aws-efa"><a class="toclink" href="..
43174317
ultra-low latency and high-throughput communication between nodes. This makes it an ideal solution for scaling
43184318
distributed training workloads across multiple GPUs and instances.</p>
43194319
<p>With the latest release of <code>dstack</code>, you can now leverage AWS EFA to supercharge your distributed training tasks.</p>
4320-
<p><img src="https://github.com/dstackai/static-assets/blob/main/static-assets/images/distributed-training-with-aws-efa-v2.png?raw=true" width="630"/></p>
4320+
<p><img src="https://dstack.ai/static-assets/static-assets/images/distributed-training-with-aws-efa-v2.png" width="630"/></p>
43214321

43224322

43234323
<nav class="md-post__action">
@@ -4365,7 +4365,7 @@ <h2 id="auto-shutdown-for-inactive-dev-environmentsno-idle-gpus"><a class="tocli
43654365
a container that has GPU access.</p>
43664366
<p>One issue with dev environments is forgetting to stop them or closing your laptop, leaving the GPU idle and costly. With
43674367
our latest update, <code>dstack</code> now detects inactive environments and automatically shuts them down, saving you money.</p>
4368-
<p><img src="https://github.com/dstackai/static-assets/blob/main/static-assets/images/inactive-dev-environments-auto-shutdown.png?raw=true" width="630"/></p>
4368+
<p><img src="https://dstack.ai/static-assets/static-assets/images/inactive-dev-environments-auto-shutdown.png" width="630"/></p>
43694369

43704370

43714371
<nav class="md-post__action">

blog/archive/2025/page/2/index.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -3744,7 +3744,7 @@ <h2 id="introducing-gpu-blocks-and-proxy-jump-for-ssh-fleets"><a class="toclink"
37443744
<p>Originally, <code>dstack</code> was focused on public clouds. With the new release, <code>dstack</code>
37453745
extends support to data centers and private clouds, offering a simpler, AI-native solution that replaces Kubernetes and
37463746
Slurm.</p>
3747-
<p><img src="https://github.com/dstackai/static-assets/blob/main/static-assets/images/data-centers-and-private-clouds.png?raw=true" width="630"/></p>
3747+
<p><img src="https://dstack.ai/static-assets/static-assets/images/data-centers-and-private-clouds.png" width="630"/></p>
37483748

37493749

37503750
<nav class="md-post__action">
@@ -3794,7 +3794,7 @@ <h2 id="supporting-nvidia-and-amd-accelerators-on-vultr"><a class="toclink" href
37943794
approach.
37953795
Today, we’re excited to share a new integration and partnership
37963796
with <a href="https://www.vultr.com/" target="_blank">Vultr <span class="twemoji external"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m11.93 5 2.83 2.83L5 17.59 6.42 19l9.76-9.75L19 12.07V5z"/></svg></span></a>.</p>
3797-
<p><img src="https://github.com/dstackai/static-assets/blob/main/static-assets/images/dstack-vultr.png?raw=true" width="630"/></p>
3797+
<p><img src="https://dstack.ai/static-assets/static-assets/images/dstack-vultr.png" width="630"/></p>
37983798
<p>This new integration enables Vultr customers to train and deploy models on both AMD
37993799
and NVIDIA GPUs with greater flexibility and efficiency–using <code>dstack</code>. </p>
38003800

0 commit comments

Comments
 (0)