-
-
Notifications
You must be signed in to change notification settings - Fork 816
Closed
Description
It looks like the Windows CUDA 12.x builds end up doing extra work to first install CUDA bits version 12 and then downgrade them; the "CUDA Toolkit" step in e.g. https://github.com/TimDettmers/bitsandbytes/actions/runs/7738001447/job/21097984338
Channels:
- pytorch
- nvidia
- conda-forge
- defaults
Platform: win-64
Collecting package metadata (repodata.json): ...working... done
Solving environment: ...working... done
## Package Plan ##
environment location: C:\Users\runneradmin\miniconda3\envs\bnb-env
added / updated specs:
- pytorch-cuda=11.8
The following packages will be downloaded:
package | build
---------------------------|-----------------
cuda-cudart-11.8.89 | 0 1.4 MB nvidia
cuda-cudart-dev-11.8.89 | 0 723 KB nvidia
cuda-cupti-11.8.[87](https://github.com/TimDettmers/bitsandbytes/actions/runs/7738001447/job/21097984338#step:8:88) | 0 11.5 MB nvidia
cuda-libraries-11.8.0 | 0 1 KB nvidia
cuda-libraries-dev-11.8.0 | 0 1 KB nvidia
cuda-nvrtc-11.8.89 | 0 72.1 MB nvidia
cuda-nvrtc-dev-11.8.89 | 0 16.1 MB nvidia
cuda-nvtx-11.8.86 | 0 43 KB nvidia
cuda-runtime-11.8.0 | 0 1 KB nvidia
libcublas-11.11.3.6 | 0 33 KB nvidia
libcublas-dev-11.11.3.6 | 0 375.9 MB nvidia
libcufft-10.9.0.58 | 0 6 KB nvidia
libcufft-dev-10.9.0.58 | 0 144.6 MB nvidia
libcusolver-11.4.1.48 | 0 29 KB nvidia
libcusolver-dev-11.4.1.48 | 0 94.1 MB nvidia
libcusparse-11.7.5.86 | 0 13 KB nvidia
libcusparse-dev-11.7.5.86 | 0 175.7 MB nvidia
libnpp-11.8.0.86 | 0 294 KB nvidia
libnpp-dev-11.8.0.86 | 0 143.2 MB nvidia
libnvjpeg-11.9.0.86 | 0 4 KB nvidia
libnvjpeg-dev-11.9.0.86 | 0 1.9 MB nvidia
pytorch-2.2.0 |py3.11_cuda11.8_cudnn8_0 1.42 GB pytorch
pytorch-cuda-11.8 | h24eeafa_5 4 KB pytorch
------------------------------------------------------------
Total: 2.43 GB
The following packages will be DOWNGRADED:
cuda-cudart 12.1.105-0 --> 11.8.89-0
cuda-cudart-dev 12.1.105-0 --> 11.8.89-0
cuda-cupti 12.1.105-0 --> 11.8.87-0
cuda-libraries 12.1.0-0 --> 11.8.0-0
cuda-libraries-dev 12.1.0-0 --> 11.8.0-0
cuda-nvrtc 12.1.105-0 --> 11.8.89-0
cuda-nvrtc-dev 12.1.105-0 --> 11.8.89-0
cuda-nvtx 12.1.105-0 --> 11.8.86-0
cuda-runtime 12.1.0-0 --> 11.8.0-0
libcublas 12.1.0.26-0 --> 11.11.3.6-0
libcublas-dev 12.1.0.26-0 --> 11.11.3.6-0
libcufft 11.0.2.4-0 --> 10.9.0.58-0
libcufft-dev 11.0.2.4-0 --> 10.9.0.58-0
libcusolver 11.4.4.55-0 --> 11.4.1.48-0
libcusolver-dev 11.4.4.55-0 --> 11.4.1.48-0
libcusparse 12.0.2.55-0 --> 11.7.5.86-0
libcusparse-dev 12.0.2.55-0 --> 11.7.5.86-0
libnpp 12.0.2.50-0 --> 11.8.0.86-0
libnpp-dev 12.0.2.50-0 --> 11.8.0.86-0
libnvjpeg 12.1.1.14-0 --> 11.9.0.86-0
libnvjpeg-dev 12.1.1.14-0 --> 11.9.0.86-0
pytorch 2.2.0-py3.11_cuda12.1_cudnn8_0 --> 2.2.0-py3.11_cuda11.8_cudnn8_0
pytorch-cuda 12.1-hde6ce7c_5 --> 11.8-h24eeafa_5
Downloading and Extracting Packages: ...working... done
Preparing transaction: ...working... done
Verifying transaction: ...working... done
Executing transaction: ...working... done
Channels:
- nvidia/label/cuda-11.8.0
- pytorch
- nvidia
- conda-forge
- defaults
Platform: win-64
Collecting package metadata (repodata.json): ...working... done
Solving environment: ...working... done
I know there's a whole bunch more work to do to clean up and optimize the CI CMake builds, but just wanted to jot this down :)
cc @wkpark
wkpark
Metadata
Metadata
Assignees
Labels
No labels