|
| 1 | +""" |
| 2 | +Disjoint Set Union (Union-Find) data structure with path compression |
| 3 | +and union by rank optimizations. |
| 4 | +
|
| 5 | +Reference: https://en.wikipedia.org/wiki/Disjoint-set_data_structure |
| 6 | +
|
| 7 | +Time Complexity: |
| 8 | + - find: O(alpha(n)) amortized, where alpha is the inverse Ackermann function |
| 9 | + - union: O(alpha(n)) amortized |
| 10 | + - connected: O(alpha(n)) amortized |
| 11 | +
|
| 12 | +Space Complexity: O(n) |
| 13 | +""" |
| 14 | + |
| 15 | + |
| 16 | +class DisjointSetUnion: |
| 17 | + """ |
| 18 | + A Disjoint Set Union (Union-Find) data structure supporting efficient |
| 19 | + union and find operations with path compression and union by rank. |
| 20 | +
|
| 21 | + >>> dsu = DisjointSetUnion(5) |
| 22 | + >>> dsu.find(0) |
| 23 | + 0 |
| 24 | + >>> dsu.union(0, 1) |
| 25 | + >>> dsu.connected(0, 1) |
| 26 | + True |
| 27 | + >>> dsu.connected(0, 2) |
| 28 | + False |
| 29 | + >>> dsu.union(1, 2) |
| 30 | + >>> dsu.connected(0, 2) |
| 31 | + True |
| 32 | + """ |
| 33 | + |
| 34 | + def __init__(self, size: int) -> None: |
| 35 | + """ |
| 36 | + Initialize a Disjoint Set Union with `size` elements (0 to size-1). |
| 37 | +
|
| 38 | + Args: |
| 39 | + size: The number of elements in the disjoint set. |
| 40 | +
|
| 41 | + Raises: |
| 42 | + ValueError: If size is not a positive integer. |
| 43 | +
|
| 44 | + >>> dsu = DisjointSetUnion(5) |
| 45 | + >>> len(dsu.parent) |
| 46 | + 5 |
| 47 | + >>> dsu = DisjointSetUnion(0) |
| 48 | + Traceback (most recent call last): |
| 49 | + ... |
| 50 | + ValueError: size must be a positive integer |
| 51 | + >>> dsu = DisjointSetUnion(-1) |
| 52 | + Traceback (most recent call last): |
| 53 | + ... |
| 54 | + ValueError: size must be a positive integer |
| 55 | + """ |
| 56 | + if size <= 0: |
| 57 | + raise ValueError("size must be a positive integer") |
| 58 | + self.size = size |
| 59 | + self.parent = list(range(size)) |
| 60 | + self.rank = [0] * size |
| 61 | + |
| 62 | + def find(self, element: int) -> int: |
| 63 | + """ |
| 64 | + Find the representative (root) of the set containing `element`. |
| 65 | + Uses path compression for optimization. |
| 66 | +
|
| 67 | + Args: |
| 68 | + element: The element to find the representative of. |
| 69 | +
|
| 70 | + Returns: |
| 71 | + The representative of the set containing element. |
| 72 | +
|
| 73 | + Raises: |
| 74 | + IndexError: If element is out of bounds. |
| 75 | +
|
| 76 | + >>> dsu = DisjointSetUnion(5) |
| 77 | + >>> dsu.find(0) |
| 78 | + 0 |
| 79 | + >>> dsu.union(0, 1) |
| 80 | + >>> dsu.find(1) == dsu.find(0) |
| 81 | + True |
| 82 | + >>> dsu.find(5) |
| 83 | + Traceback (most recent call last): |
| 84 | + ... |
| 85 | + IndexError: element 5 is out of bounds for size 5 |
| 86 | + >>> dsu.find(-1) |
| 87 | + Traceback (most recent call last): |
| 88 | + ... |
| 89 | + IndexError: element -1 is out of bounds for size 5 |
| 90 | + """ |
| 91 | + if element < 0 or element >= self.size: |
| 92 | + msg = f"element {element} is out of bounds for size {self.size}" |
| 93 | + raise IndexError(msg) |
| 94 | + |
| 95 | + if self.parent[element] != element: |
| 96 | + self.parent[element] = self.find(self.parent[element]) |
| 97 | + return self.parent[element] |
| 98 | + |
| 99 | + def union(self, element1: int, element2: int) -> None: |
| 100 | + """ |
| 101 | + Merge the sets containing `element1` and `element2`. |
| 102 | + Uses union by rank for optimization. |
| 103 | +
|
| 104 | + Args: |
| 105 | + element1: An element in the first set. |
| 106 | + element2: An element in the second set. |
| 107 | +
|
| 108 | + Raises: |
| 109 | + IndexError: If either element is out of bounds. |
| 110 | +
|
| 111 | + >>> dsu = DisjointSetUnion(5) |
| 112 | + >>> dsu.union(0, 1) |
| 113 | + >>> dsu.connected(0, 1) |
| 114 | + True |
| 115 | + >>> dsu.union(2, 3) |
| 116 | + >>> dsu.union(0, 3) |
| 117 | + >>> dsu.connected(1, 2) |
| 118 | + True |
| 119 | + >>> dsu.union(4, 4) # Self-union should not corrupt the structure |
| 120 | + >>> dsu.find(4) |
| 121 | + 4 |
| 122 | + >>> dsu.union(5, 0) |
| 123 | + Traceback (most recent call last): |
| 124 | + ... |
| 125 | + IndexError: element 5 is out of bounds for size 5 |
| 126 | + """ |
| 127 | + root1 = self.find(element1) |
| 128 | + root2 = self.find(element2) |
| 129 | + |
| 130 | + if root1 == root2: |
| 131 | + return |
| 132 | + |
| 133 | + if self.rank[root1] < self.rank[root2]: |
| 134 | + self.parent[root1] = root2 |
| 135 | + elif self.rank[root1] > self.rank[root2]: |
| 136 | + self.parent[root2] = root1 |
| 137 | + else: |
| 138 | + self.parent[root2] = root1 |
| 139 | + self.rank[root1] += 1 |
| 140 | + |
| 141 | + def connected(self, element1: int, element2: int) -> bool: |
| 142 | + """ |
| 143 | + Check if `element1` and `element2` belong to the same set. |
| 144 | +
|
| 145 | + Args: |
| 146 | + element1: The first element. |
| 147 | + element2: The second element. |
| 148 | +
|
| 149 | + Returns: |
| 150 | + True if both elements are in the same set, False otherwise. |
| 151 | +
|
| 152 | + Raises: |
| 153 | + IndexError: If either element is out of bounds. |
| 154 | +
|
| 155 | + >>> dsu = DisjointSetUnion(5) |
| 156 | + >>> dsu.connected(0, 1) |
| 157 | + False |
| 158 | + >>> dsu.union(0, 1) |
| 159 | + >>> dsu.connected(0, 1) |
| 160 | + True |
| 161 | + >>> dsu.connected(1, 0) |
| 162 | + True |
| 163 | + >>> dsu.connected(0, 0) |
| 164 | + True |
| 165 | + >>> dsu.connected(0, 5) |
| 166 | + Traceback (most recent call last): |
| 167 | + ... |
| 168 | + IndexError: element 5 is out of bounds for size 5 |
| 169 | + """ |
| 170 | + return self.find(element1) == self.find(element2) |
| 171 | + |
| 172 | + |
| 173 | +if __name__ == "__main__": |
| 174 | + import doctest |
| 175 | + |
| 176 | + doctest.testmod() |
0 commit comments