|
| 1 | +""" |
| 2 | +Branch and Bound solution for the 0/1 Knapsack problem. |
| 3 | +
|
| 4 | +This implementation uses a best-first search strategy and prunes |
| 5 | +non-promising branches using an upper bound calculated via the |
| 6 | +fractional knapsack (greedy) approach. |
| 7 | +
|
| 8 | +References: |
| 9 | +https://en.wikipedia.org/wiki/Branch_and_bound |
| 10 | +https://en.wikipedia.org/wiki/Knapsack_problem |
| 11 | +""" |
| 12 | + |
| 13 | +from dataclasses import dataclass |
| 14 | +from typing import List |
| 15 | +import heapq |
| 16 | + |
| 17 | + |
| 18 | +@dataclass |
| 19 | +class Item: |
| 20 | + weight: int |
| 21 | + value: int |
| 22 | + |
| 23 | + |
| 24 | +@dataclass |
| 25 | +class Node: |
| 26 | + level: int |
| 27 | + profit: int |
| 28 | + weight: int |
| 29 | + bound: float |
| 30 | + |
| 31 | + |
| 32 | +def calculate_bound(node: Node, capacity: int, items: List[Item]) -> float: |
| 33 | + """ |
| 34 | + Calculate the upper bound of profit for a node using |
| 35 | + the fractional knapsack approach. |
| 36 | + """ |
| 37 | + if node.weight >= capacity: |
| 38 | + return 0.0 |
| 39 | + |
| 40 | + profit_bound = node.profit |
| 41 | + total_weight = node.weight |
| 42 | + index = node.level + 1 |
| 43 | + |
| 44 | + while index < len(items) and total_weight + items[index].weight <= capacity: |
| 45 | + total_weight += items[index].weight |
| 46 | + profit_bound += items[index].value |
| 47 | + index += 1 |
| 48 | + |
| 49 | + if index < len(items): |
| 50 | + profit_bound += ( |
| 51 | + (capacity - total_weight) |
| 52 | + * items[index].value |
| 53 | + / items[index].weight |
| 54 | + ) |
| 55 | + |
| 56 | + return profit_bound |
| 57 | + |
| 58 | + |
| 59 | +def knapsack_branch_and_bound( |
| 60 | + capacity: int, weights: List[int], values: List[int] |
| 61 | +) -> int: |
| 62 | + """ |
| 63 | + Solve the 0/1 Knapsack problem using the Branch and Bound technique. |
| 64 | +
|
| 65 | + >>> knapsack_branch_and_bound(50, [10, 20, 30], [60, 100, 120]) |
| 66 | + 220 |
| 67 | + """ |
| 68 | + items = [Item(w, v) for w, v in zip(weights, values)] |
| 69 | + items.sort(key=lambda item: item.value / item.weight, reverse=True) |
| 70 | + |
| 71 | + priority_queue: list[tuple[float, Node]] = [] |
| 72 | + |
| 73 | + root = Node(level=-1, profit=0, weight=0, bound=0.0) |
| 74 | + root.bound = calculate_bound(root, capacity, items) |
| 75 | + |
| 76 | + heapq.heappush(priority_queue, (-root.bound, root)) |
| 77 | + max_profit = 0 |
| 78 | + |
| 79 | + while priority_queue: |
| 80 | + _, current = heapq.heappop(priority_queue) |
| 81 | + |
| 82 | + if current.bound <= max_profit: |
| 83 | + continue |
| 84 | + |
| 85 | + next_level = current.level + 1 |
| 86 | + if next_level >= len(items): |
| 87 | + continue |
| 88 | + |
| 89 | + # Include the next item |
| 90 | + include_node = Node( |
| 91 | + level=next_level, |
| 92 | + weight=current.weight + items[next_level].weight, |
| 93 | + profit=current.profit + items[next_level].value, |
| 94 | + bound=0.0, |
| 95 | + ) |
| 96 | + |
| 97 | + if include_node.weight <= capacity: |
| 98 | + max_profit = max(max_profit, include_node.profit) |
| 99 | + |
| 100 | + include_node.bound = calculate_bound(include_node, capacity, items) |
| 101 | + if include_node.bound > max_profit: |
| 102 | + heapq.heappush(priority_queue, (-include_node.bound, include_node)) |
| 103 | + |
| 104 | + # Exclude the next item |
| 105 | + exclude_node = Node( |
| 106 | + level=next_level, |
| 107 | + weight=current.weight, |
| 108 | + profit=current.profit, |
| 109 | + bound=0.0, |
| 110 | + ) |
| 111 | + |
| 112 | + exclude_node.bound = calculate_bound(exclude_node, capacity, items) |
| 113 | + if exclude_node.bound > max_profit: |
| 114 | + heapq.heappush(priority_queue, (-exclude_node.bound, exclude_node)) |
| 115 | + |
| 116 | + return max_profit |
| 117 | + |
| 118 | + |
| 119 | +if __name__ == "__main__": |
| 120 | + # Example usage |
| 121 | + capacity_example = 50 |
| 122 | + weights_example = [10, 20, 30] |
| 123 | + values_example = [60, 100, 120] |
| 124 | + |
| 125 | + print( |
| 126 | + knapsack_branch_and_bound( |
| 127 | + capacity_example, weights_example, values_example |
| 128 | + ) |
| 129 | + ) |
0 commit comments