|
| 1 | +package com.thealgorithms.ciphers; |
| 2 | + |
| 3 | +import java.math.BigInteger; |
| 4 | +import java.security.SecureRandom; |
| 5 | + |
| 6 | +public class ElGamalCipher { |
| 7 | + private BigInteger p, g, x, y; |
| 8 | + private SecureRandom random = new SecureRandom(); |
| 9 | + |
| 10 | + // Key generation |
| 11 | + public void generateKeys(int bitLength) { |
| 12 | + p = BigInteger.probablePrime(bitLength, random); |
| 13 | + g = new BigInteger(bitLength - 1, random).mod(p); |
| 14 | + x = new BigInteger(bitLength - 2, random); // Private key |
| 15 | + y = g.modPow(x, p); // Public key |
| 16 | + } |
| 17 | + |
| 18 | + // Encryption: returns [c1, c2] |
| 19 | + public BigInteger[] encrypt(BigInteger message) { |
| 20 | + BigInteger k = new BigInteger(p.bitLength() - 1, random); |
| 21 | + BigInteger c1 = g.modPow(k, p); |
| 22 | + BigInteger s = y.modPow(k, p); |
| 23 | + BigInteger c2 = s.multiply(message).mod(p); |
| 24 | + return new BigInteger[]{c1, c2}; |
| 25 | + } |
| 26 | + |
| 27 | + // Decryption: m = c2 * (c1^x)^-1 mod p |
| 28 | + public BigInteger decrypt(BigInteger c1, BigInteger c2) { |
| 29 | + BigInteger s = c1.modPow(x, p); |
| 30 | + BigInteger sInv = s.modInverse(p); |
| 31 | + return c2.multiply(sInv).mod(p); |
| 32 | + } |
| 33 | + |
| 34 | + // Example usage |
| 35 | + public static void main(String[] args) { |
| 36 | + ElGamalCipher elgamal = new ElGamalCipher(); |
| 37 | + elgamal.generateKeys(256); |
| 38 | + |
| 39 | + BigInteger message = new BigInteger("12345"); |
| 40 | + BigInteger[] cipher = elgamal.encrypt(message); |
| 41 | + BigInteger decrypted = elgamal.decrypt(cipher[0], cipher[1]); |
| 42 | + |
| 43 | + System.out.println("Original: " + message); |
| 44 | + System.out.println("Encrypted: c1=" + cipher[0] + ", c2=" + cipher[1]); |
| 45 | + System.out.println("Decrypted: " + decrypted); |
| 46 | + } |
| 47 | +} |
0 commit comments