Skip to content

星辰支持AutoModelForSequenceClassification任务相关问题 #71

@tcoln

Description

@tcoln

尝试在星辰开源代码库中的modeling_telechat添加TelechatForSequenceClassification方法类(分别参照qwen和星辰自己代码),会分别出现无法加载模型的错误和训练损失不下降的情况。需要AI公司帮忙一起看看怎么支持AutoModelForSequenceClassification任务。

class TelechatForSequenceClassification_tele(TelechatPreTrainedModel):
# _tied_weights_keys = ["lm_head.weight"]
#_keys_to_ignore_on_load_missing = [ r"lm_head.weight"]
def init(self, config: TelechatConfig):
super().init(config)
self.num_labels = config.num_labels
self.transformer = TelechatModel(config)
self.lm_head = nn.Linear(config.hidden_size, self.num_labels, bias=False)
self.post_init()

def get_input_embeddings(self):
    return self.model.embed_tokens

def set_input_embeddings(self, value):
    self.model.embed_tokens = value

def get_output_embeddings(self):
    return self.lm_head

def set_output_embeddings(self, new_embeddings: torch.Tensor):
    self.lm_head = new_embeddings

def prepare_inputs_for_generation(
        self,
        input_ids: torch.LongTensor,
        past_key_values: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        **kwargs,
) -> dict:
    if past_key_values:
        input_ids = input_ids[:, -1].unsqueeze(-1)
    if inputs_embeds is not None and past_key_values is None:
        model_inputs = {"inputs_embeds": inputs_embeds}
    else:
        model_inputs = {"input_ids": input_ids}

    model_inputs.update(
        {
            "past_key_values": past_key_values,
            "use_cache": kwargs.get("use_cache"),
            "attention_mask": attention_mask,
        }
    )
    return model_inputs

def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **deprecated_arguments,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:

    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    transformer_outputs = self.transformer(
        input_ids,
        past_key_values=past_key_values,
        attention_mask=attention_mask,
        inputs_embeds=inputs_embeds,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )
    hidden_states = transformer_outputs[0]
    lm_logits = self.lm_head(hidden_states)

    if input_ids is not None:
        batch_size = input_ids.shape[0]
    else:
        batch_size = inputs_embeds.shape[0]

    if self.config.pad_token_id is None and batch_size != 1:
        raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
    if self.config.pad_token_id is None:
        sequence_lengths = -1
    else:
        if input_ids is not None:
            # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
            sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
            sequence_lengths = sequence_lengths % input_ids.shape[-1]
            sequence_lengths = sequence_lengths.to(logits.device)
        else:
            sequence_lengths = -1

    pooled_logits = lm_logits[torch.arange(batch_size, device=logits.device), sequence_lengths]

    loss = None
    if labels is not None:
        labels = labels.to(lm_logits.device)
        shift_logits = lm_logits[..., :-1, :].contiguous()
        shift_labels = labels[..., 1:].contiguous()
        #batch_size, seq_length, num_labels = shift_logits.shape
        loss_fct = CrossEntropyLoss()
        #loss = loss_fct(shift_logits.view(batch_size * seq_length, num_labels), shift_labels.view(batch_size * seq_length))
        loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))

    if not return_dict:
        output = (lm_logits,) + transformer_outputs[1:]
        return ((loss,) + output) if loss is not None else output

    return SequenceClassifierOutputWithPast(
        loss=loss,
        logits=pooled_logits,#lm_logits,
        past_key_values=transformer_outputs.past_key_values,
        hidden_states=transformer_outputs.hidden_states,
        attentions=transformer_outputs.attentions,
    )
20240919121226

class TelechatForSequenceClassification_qwen(TelechatPreTrainedModel):
def init(self, config):
super().init(config)
self.num_labels = config.num_labels
self.model = TelechatModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)

    # Initialize weights and apply final processing
    self.post_init()

def get_input_embeddings(self):
    return self.model.embed_tokens

def set_input_embeddings(self, value):
    self.model.embed_tokens = value

def forward(
    self,
    input_ids: torch.LongTensor = None,
    attention_mask: Optional[torch.Tensor] = None,
    position_ids: Optional[torch.LongTensor] = None,
    past_key_values: Optional[List[torch.FloatTensor]] = None,
    inputs_embeds: Optional[torch.FloatTensor] = None,
    labels: Optional[torch.LongTensor] = None,
    use_cache: Optional[bool] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
    r"""
    labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
        Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
        config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
        `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
    """
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    transformer_outputs = self.model(
        input_ids,
        attention_mask=attention_mask,
        position_ids=position_ids,
        past_key_values=past_key_values,
        inputs_embeds=inputs_embeds,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )
    hidden_states = transformer_outputs[0]
    logits = self.score(hidden_states)

    if input_ids is not None:
        batch_size = input_ids.shape[0]
    else:
        batch_size = inputs_embeds.shape[0]

    if self.config.pad_token_id is None and batch_size != 1:
        raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
    if self.config.pad_token_id is None:
        sequence_lengths = -1
    else:
        if input_ids is not None:
            # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
            sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
            sequence_lengths = sequence_lengths % input_ids.shape[-1]
            sequence_lengths = sequence_lengths.to(logits.device)
        else:
            sequence_lengths = -1

    pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]

    loss = None
    if labels is not None:
        labels = labels.to(logits.device)
        if self.config.problem_type is None:
            if self.num_labels == 1:
                self.config.problem_type = "regression"
            elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                self.config.problem_type = "single_label_classification"
            else:
                self.config.problem_type = "multi_label_classification"

        if self.config.problem_type == "regression":
            loss_fct = MSELoss()
            if self.num_labels == 1:
                loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
            else:
                loss = loss_fct(pooled_logits, labels)
        elif self.config.problem_type == "single_label_classification":
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
        elif self.config.problem_type == "multi_label_classification":
            loss_fct = BCEWithLogitsLoss()
            loss = loss_fct(pooled_logits, labels)
    #print('************************', return_dict, loss, self.config)
    if not return_dict:
        output = (pooled_logits,) + transformer_outputs[1:]
        return ((loss,) + output) if loss is not None else output
    #print(f'**********pooled_logits={pooled_logits}***transformer_outputs={transformer_outputs}***********', pooled_logits, transformer_outputs)
    return SequenceClassifierOutputWithPast(
        loss=loss,
        logits=pooled_logits,
        past_key_values=transformer_outputs.past_key_values,
        hidden_states=transformer_outputs.hidden_states,
        attentions=transformer_outputs.attentions,
    )

1

加载模型的代码如下:
2

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions