|
1 | | -"""Custom layers model including absorption""" |
2 | | - |
3 | 1 | import os |
4 | 2 | import pathlib |
5 | 3 |
|
6 | 4 | import numpy as np |
7 | 5 |
|
8 | 6 | import RATapi as RAT |
9 | 7 |
|
10 | | -problem = RAT.Project( |
11 | | - name="Absorption example", |
12 | | - calculation="non polarised", |
13 | | - model="custom layers", |
14 | | - geometry="substrate/liquid", |
15 | | - absorption=True, |
16 | | -) |
17 | | - |
18 | | -# Add the required parameters (substrate roughness is already there by default) |
19 | | -problem.parameters.append(name="Alloy Thickness", min=100.0, value=135.6, max=200.0, fit=True) |
20 | | -problem.parameters.append(name="Alloy SLD up", min=6.0e-6, value=9.87e-6, max=1.2e-5, fit=True) |
21 | | -problem.parameters.append(name="Alloy SLD imaginary up", min=1.0e-9, value=4.87e-8, max=1.0e-7, fit=True) |
22 | | -problem.parameters.append(name="Alloy SLD down", min=6.0e-6, value=7.05e-6, max=1.3e-5, fit=True) |
23 | | -problem.parameters.append(name="Alloy SLD imaginary down", min=1.0e-9, value=4.87e-8, max=1.0e-7, fit=True) |
24 | | -problem.parameters.append(name="Alloy Roughness", min=2.0, value=5.71, max=10.0, fit=True) |
25 | | -problem.parameters.append(name="Gold Thickness", min=100.0, value=154.7, max=200.0, fit=True) |
26 | | -problem.parameters.append(name="Gold Roughness", min=0.1, value=5.42, max=10.0, fit=True) |
27 | | -problem.parameters.append(name="Gold SLD", min=4.0e-6, value=4.49e-6, max=5.0e-6, fit=True) |
28 | | -problem.parameters.append(name="Gold SLD imaginary", min=1.0e-9, value=4.20e-8, max=1.0e-7, fit=True) |
29 | | - |
30 | | -problem.parameters.append(name="Thiol APM", min=40.0, value=56.27, max=100.0, fit=True) |
31 | | -problem.parameters.append(name="Thiol Head Hydration", min=20.0, value=30.0, max=50.0, fit=True) |
32 | | -problem.parameters.append(name="Thiol Coverage", min=0.5, value=0.9, max=1.0, fit=True) |
33 | | - |
34 | | -problem.parameters.append(name="CW Thickness", min=1.0, value=12.87, max=25.0, fit=True) |
35 | | -problem.parameters.append(name="Bilayer APM", min=48.0, value=65.86, max=90.0, fit=True) |
36 | | -problem.parameters.append(name="Bilayer Head Hydration", min=20.0, value=30.0, max=50.0, fit=True) |
37 | | -problem.parameters.append(name="Bilayer Roughness", min=1.0, value=3.87, max=10.0, fit=True) |
38 | | -problem.parameters.append(name="Bilayer Coverage", min=0.5, value=0.94, max=1.0, fit=True) |
39 | | - |
40 | | -# Change the existing Bulk In parameter to be Silicon |
41 | | -problem.bulk_in.set_fields(0, name="Silicon", min=2.0e-6, value=2.073e-6, max=2.1e-6) |
42 | | - |
43 | | -# We need 2 bulk outs - D2O and H2O |
44 | | -problem.bulk_out.set_fields(0, name="D2O", min=5.8e-06, value=6.21e-06, max=6.35e-06, fit=True) |
45 | | -problem.bulk_out.append(name="H2O", min=-5.6e-07, value=-3.15e-07, max=0.0, fit=True) |
46 | | - |
47 | | -# Use a different scalefactor for each dataset |
48 | | -del problem.scalefactors[0] |
49 | | -problem.scalefactors.append(name="Scalefactor 1", min=0.5, value=1, max=1.5, fit=True) |
50 | | -problem.scalefactors.append(name="Scalefactor 2", min=0.5, value=1, max=1.5, fit=True) |
51 | | -problem.scalefactors.append(name="Scalefactor 3", min=0.5, value=1, max=1.5, fit=True) |
52 | | -problem.scalefactors.append(name="Scalefactor 4", min=0.5, value=1, max=1.5, fit=True) |
53 | | - |
54 | | -# Similarly, use an individual background for each dataset |
55 | | -del problem.backgrounds[0] |
56 | | -del problem.background_parameters[0] |
57 | | - |
58 | | -problem.background_parameters.append(name="Background parameter 1", min=5.0e-08, value=7.88e-06, max=9.0e-05, fit=True) |
59 | | -problem.background_parameters.append(name="Background parameter 2", min=1.0e-08, value=5.46e-06, max=9.0e-05, fit=True) |
60 | | -problem.background_parameters.append(name="Background parameter 3", min=1.0e-06, value=9.01e-06, max=9.0e-05, fit=True) |
61 | | -problem.background_parameters.append(name="Background parameter 4", min=1.0e-06, value=5.61e-06, max=9.0e-05, fit=True) |
62 | | - |
63 | | -problem.backgrounds.append(name="Background 1", type="constant", value_1="Background parameter 1") |
64 | | -problem.backgrounds.append(name="Background 2", type="constant", value_1="Background parameter 2") |
65 | | -problem.backgrounds.append(name="Background 3", type="constant", value_1="Background parameter 3") |
66 | | -problem.backgrounds.append(name="Background 4", type="constant", value_1="Background parameter 4") |
67 | | - |
68 | | -# Make the resolution fittable |
69 | | -problem.resolution_parameters.set_fields(0, fit=True) |
70 | | - |
71 | | -# Now add the data we need |
72 | | -data_path = os.path.join(pathlib.Path(__file__).parents[1].resolve(), "data") |
73 | | - |
74 | | -data_1 = np.loadtxt(os.path.join(data_path, "D2O_spin_down.dat")) |
75 | | -problem.data.append(name="D2O_dn", data=data_1) |
76 | | - |
77 | | -data_2 = np.loadtxt(os.path.join(data_path, "D2O_spin_up.dat")) |
78 | | -problem.data.append(name="D2O_up", data=data_2) |
79 | | - |
80 | | -data_3 = np.loadtxt(os.path.join(data_path, "H2O_spin_down.dat")) |
81 | | -problem.data.append(name="H2O_dn", data=data_3) |
82 | | - |
83 | | -data_4 = np.loadtxt(os.path.join(data_path, "H2O_spin_up.dat")) |
84 | | -problem.data.append(name="H2O_up", data=data_4) |
85 | | - |
86 | | -# Add the custom file |
87 | | -problem.custom_files.append( |
88 | | - name="DPPC absorption", |
89 | | - filename="volume_thiol_bilayer.py", |
90 | | - language="python", |
91 | | - path=pathlib.Path(__file__).parent.resolve(), |
92 | | -) |
93 | | - |
94 | | -# Finally add the contrasts |
95 | | -problem.contrasts.append( |
96 | | - name="D2O Down", |
97 | | - data="D2O_dn", |
98 | | - background="Background 1", |
99 | | - bulk_in="Silicon", |
100 | | - bulk_out="D2O", |
101 | | - scalefactor="Scalefactor 1", |
102 | | - resolution="Resolution 1", |
103 | | - resample=True, |
104 | | - model=["DPPC absorption"], |
105 | | -) |
106 | | - |
107 | | -problem.contrasts.append( |
108 | | - name="D2O Up", |
109 | | - data="D2O_up", |
110 | | - background="Background 2", |
111 | | - bulk_in="Silicon", |
112 | | - bulk_out="D2O", |
113 | | - scalefactor="Scalefactor 2", |
114 | | - resolution="Resolution 1", |
115 | | - resample=True, |
116 | | - model=["DPPC absorption"], |
117 | | -) |
118 | | - |
119 | | -problem.contrasts.append( |
120 | | - name="H2O Down", |
121 | | - data="H2O_dn", |
122 | | - background="Background 3", |
123 | | - bulk_in="Silicon", |
124 | | - bulk_out="H2O", |
125 | | - scalefactor="Scalefactor 3", |
126 | | - resolution="Resolution 1", |
127 | | - resample=True, |
128 | | - model=["DPPC absorption"], |
129 | | -) |
130 | | - |
131 | | -problem.contrasts.append( |
132 | | - name="H2O Up", |
133 | | - data="H2O_up", |
134 | | - background="Background 4", |
135 | | - bulk_in="Silicon", |
136 | | - bulk_out="H2O", |
137 | | - scalefactor="Scalefactor 4", |
138 | | - resolution="Resolution 1", |
139 | | - resample=True, |
140 | | - model=["DPPC absorption"], |
141 | | -) |
142 | | - |
143 | | -# Now make a controls block |
144 | | -controls = RAT.Controls(parallel="contrasts", resampleParams=[0.9, 150.0]) |
145 | | - |
146 | | -# Run the code and plot the results |
147 | | -problem, results = RAT.run(problem, controls) |
148 | | -RAT.plotting.plot_ref_sld(problem, results, True) |
| 8 | + |
| 9 | +def absorption(): |
| 10 | + """Custom layers model including absorption""" |
| 11 | + problem = RAT.Project( |
| 12 | + name="Absorption example", |
| 13 | + calculation="non polarised", |
| 14 | + model="custom layers", |
| 15 | + geometry="substrate/liquid", |
| 16 | + absorption=True, |
| 17 | + ) |
| 18 | + |
| 19 | + # Add the required parameters (substrate roughness is already there by default) |
| 20 | + problem.parameters.append(name="Alloy Thickness", min=100.0, value=135.6, max=200.0, fit=True) |
| 21 | + problem.parameters.append(name="Alloy SLD up", min=6.0e-6, value=9.87e-6, max=1.2e-5, fit=True) |
| 22 | + problem.parameters.append(name="Alloy SLD imaginary up", min=1.0e-9, value=4.87e-8, max=1.0e-7, fit=True) |
| 23 | + problem.parameters.append(name="Alloy SLD down", min=6.0e-6, value=7.05e-6, max=1.3e-5, fit=True) |
| 24 | + problem.parameters.append(name="Alloy SLD imaginary down", min=1.0e-9, value=4.87e-8, max=1.0e-7, fit=True) |
| 25 | + problem.parameters.append(name="Alloy Roughness", min=2.0, value=5.71, max=10.0, fit=True) |
| 26 | + problem.parameters.append(name="Gold Thickness", min=100.0, value=154.7, max=200.0, fit=True) |
| 27 | + problem.parameters.append(name="Gold Roughness", min=0.1, value=5.42, max=10.0, fit=True) |
| 28 | + problem.parameters.append(name="Gold SLD", min=4.0e-6, value=4.49e-6, max=5.0e-6, fit=True) |
| 29 | + problem.parameters.append(name="Gold SLD imaginary", min=1.0e-9, value=4.20e-8, max=1.0e-7, fit=True) |
| 30 | + |
| 31 | + problem.parameters.append(name="Thiol APM", min=40.0, value=56.27, max=100.0, fit=True) |
| 32 | + problem.parameters.append(name="Thiol Head Hydration", min=20.0, value=30.0, max=50.0, fit=True) |
| 33 | + problem.parameters.append(name="Thiol Coverage", min=0.5, value=0.9, max=1.0, fit=True) |
| 34 | + |
| 35 | + problem.parameters.append(name="CW Thickness", min=1.0, value=12.87, max=25.0, fit=True) |
| 36 | + problem.parameters.append(name="Bilayer APM", min=48.0, value=65.86, max=90.0, fit=True) |
| 37 | + problem.parameters.append(name="Bilayer Head Hydration", min=20.0, value=30.0, max=50.0, fit=True) |
| 38 | + problem.parameters.append(name="Bilayer Roughness", min=1.0, value=3.87, max=10.0, fit=True) |
| 39 | + problem.parameters.append(name="Bilayer Coverage", min=0.5, value=0.94, max=1.0, fit=True) |
| 40 | + |
| 41 | + # Change the existing Bulk In parameter to be Silicon |
| 42 | + problem.bulk_in.set_fields(0, name="Silicon", min=2.0e-6, value=2.073e-6, max=2.1e-6) |
| 43 | + |
| 44 | + # We need 2 bulk outs - D2O and H2O |
| 45 | + problem.bulk_out.set_fields(0, name="D2O", min=5.8e-06, value=6.21e-06, max=6.35e-06, fit=True) |
| 46 | + problem.bulk_out.append(name="H2O", min=-5.6e-07, value=-3.15e-07, max=0.0, fit=True) |
| 47 | + |
| 48 | + # Use a different scalefactor for each dataset |
| 49 | + del problem.scalefactors[0] |
| 50 | + problem.scalefactors.append(name="Scalefactor 1", min=0.5, value=1, max=1.5, fit=True) |
| 51 | + problem.scalefactors.append(name="Scalefactor 2", min=0.5, value=1, max=1.5, fit=True) |
| 52 | + problem.scalefactors.append(name="Scalefactor 3", min=0.5, value=1, max=1.5, fit=True) |
| 53 | + problem.scalefactors.append(name="Scalefactor 4", min=0.5, value=1, max=1.5, fit=True) |
| 54 | + |
| 55 | + # Similarly, use an individual background for each dataset |
| 56 | + del problem.backgrounds[0] |
| 57 | + del problem.background_parameters[0] |
| 58 | + |
| 59 | + problem.background_parameters.append( |
| 60 | + name="Background parameter 1", min=5.0e-08, value=7.88e-06, max=9.0e-05, fit=True |
| 61 | + ) |
| 62 | + problem.background_parameters.append( |
| 63 | + name="Background parameter 2", min=1.0e-08, value=5.46e-06, max=9.0e-05, fit=True |
| 64 | + ) |
| 65 | + problem.background_parameters.append( |
| 66 | + name="Background parameter 3", min=1.0e-06, value=9.01e-06, max=9.0e-05, fit=True |
| 67 | + ) |
| 68 | + problem.background_parameters.append( |
| 69 | + name="Background parameter 4", min=1.0e-06, value=5.61e-06, max=9.0e-05, fit=True |
| 70 | + ) |
| 71 | + |
| 72 | + problem.backgrounds.append(name="Background 1", type="constant", value_1="Background parameter 1") |
| 73 | + problem.backgrounds.append(name="Background 2", type="constant", value_1="Background parameter 2") |
| 74 | + problem.backgrounds.append(name="Background 3", type="constant", value_1="Background parameter 3") |
| 75 | + problem.backgrounds.append(name="Background 4", type="constant", value_1="Background parameter 4") |
| 76 | + |
| 77 | + # Make the resolution fittable |
| 78 | + problem.resolution_parameters.set_fields(0, fit=True) |
| 79 | + |
| 80 | + # Now add the data we need |
| 81 | + data_path = os.path.join(pathlib.Path(__file__).parents[1].resolve(), "data") |
| 82 | + |
| 83 | + data_1 = np.loadtxt(os.path.join(data_path, "D2O_spin_down.dat")) |
| 84 | + problem.data.append(name="D2O_dn", data=data_1) |
| 85 | + |
| 86 | + data_2 = np.loadtxt(os.path.join(data_path, "D2O_spin_up.dat")) |
| 87 | + problem.data.append(name="D2O_up", data=data_2) |
| 88 | + |
| 89 | + data_3 = np.loadtxt(os.path.join(data_path, "H2O_spin_down.dat")) |
| 90 | + problem.data.append(name="H2O_dn", data=data_3) |
| 91 | + |
| 92 | + data_4 = np.loadtxt(os.path.join(data_path, "H2O_spin_up.dat")) |
| 93 | + problem.data.append(name="H2O_up", data=data_4) |
| 94 | + |
| 95 | + # Add the custom file |
| 96 | + problem.custom_files.append( |
| 97 | + name="DPPC absorption", |
| 98 | + filename="volume_thiol_bilayer.py", |
| 99 | + language="python", |
| 100 | + path=pathlib.Path(__file__).parent.resolve(), |
| 101 | + ) |
| 102 | + |
| 103 | + # Finally add the contrasts |
| 104 | + problem.contrasts.append( |
| 105 | + name="D2O Down", |
| 106 | + data="D2O_dn", |
| 107 | + background="Background 1", |
| 108 | + bulk_in="Silicon", |
| 109 | + bulk_out="D2O", |
| 110 | + scalefactor="Scalefactor 1", |
| 111 | + resolution="Resolution 1", |
| 112 | + resample=True, |
| 113 | + model=["DPPC absorption"], |
| 114 | + ) |
| 115 | + |
| 116 | + problem.contrasts.append( |
| 117 | + name="D2O Up", |
| 118 | + data="D2O_up", |
| 119 | + background="Background 2", |
| 120 | + bulk_in="Silicon", |
| 121 | + bulk_out="D2O", |
| 122 | + scalefactor="Scalefactor 2", |
| 123 | + resolution="Resolution 1", |
| 124 | + resample=True, |
| 125 | + model=["DPPC absorption"], |
| 126 | + ) |
| 127 | + |
| 128 | + problem.contrasts.append( |
| 129 | + name="H2O Down", |
| 130 | + data="H2O_dn", |
| 131 | + background="Background 3", |
| 132 | + bulk_in="Silicon", |
| 133 | + bulk_out="H2O", |
| 134 | + scalefactor="Scalefactor 3", |
| 135 | + resolution="Resolution 1", |
| 136 | + resample=True, |
| 137 | + model=["DPPC absorption"], |
| 138 | + ) |
| 139 | + |
| 140 | + problem.contrasts.append( |
| 141 | + name="H2O Up", |
| 142 | + data="H2O_up", |
| 143 | + background="Background 4", |
| 144 | + bulk_in="Silicon", |
| 145 | + bulk_out="H2O", |
| 146 | + scalefactor="Scalefactor 4", |
| 147 | + resolution="Resolution 1", |
| 148 | + resample=True, |
| 149 | + model=["DPPC absorption"], |
| 150 | + ) |
| 151 | + |
| 152 | + # Now make a controls block and run the code |
| 153 | + controls = RAT.Controls(parallel="contrasts", resampleParams=[0.9, 150.0]) |
| 154 | + problem, results = RAT.run(problem, controls) |
| 155 | + |
| 156 | + return problem, results |
| 157 | + |
| 158 | + |
| 159 | +if __name__ == "__main__": |
| 160 | + problem, results = absorption() |
| 161 | + RAT.plotting.plot_ref_sld(problem, results, True) |
0 commit comments